Prof. Dr. Kim Albrecht, Yağmur Uçkunkaya & Lars Christian Schmidt

My Al is better than yours

Workshop on training Al Models as creative practice

Folkwang University 06.10 – 13.10.25

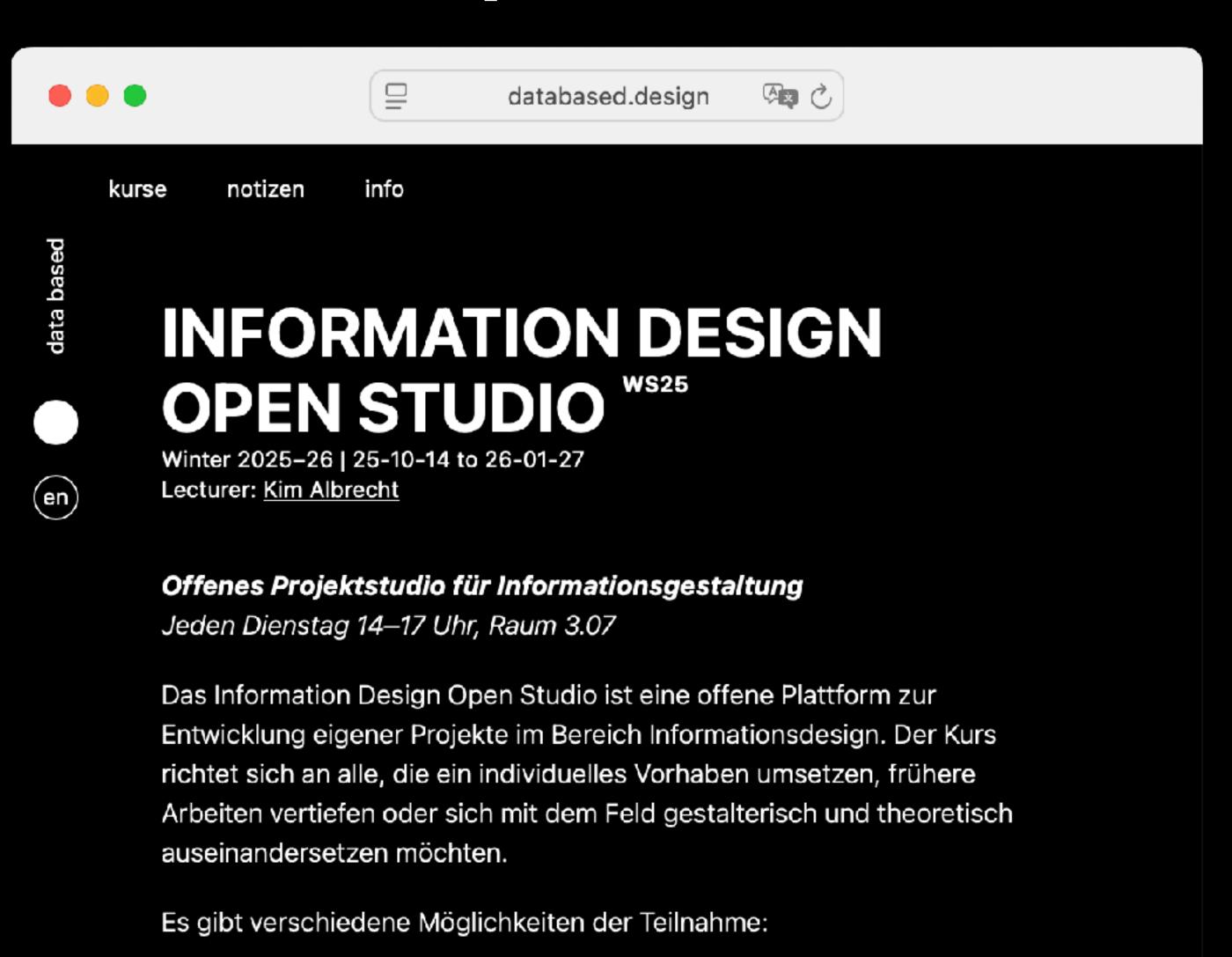
Schedule

Titel	Thema	Datum	Zeit	Info	Abgabe
Einführung	Intro	06.10.25	10:00 - 12:00	Einführung ins Maschinelle Lernen und aufzeigen Künstlerischer Positionen in dem Gebiet	
Ideation Workshop	Modell Wählen	06.10.25	13:00 – 15:00 (17:00?)	Ideen Findung	
Ideation Workshop	Gruppe finden	06.10.25	10:00 – 12:00	Idee Ausarbeiten	
Gathering	Sammeln	07.10.25	12:00 – 17:00	Feedback Gespräche 3.07	
Zwischenvorstellung der Sammlungen	Vorstellen & Feedback	07.10.25	17:00 – 18:00	Vorstellung der Sammlung und Idee des Projektes.	Abgabe eines Ordners von min. 20% der Sammlung
Gathering	Sammeln	08.10.25	10:00 – 17:00	Feedback Gespräche 3.07	
Vorstellung der Sammlungen	Vorstellen & Feedback	08.10.25	17:00 – 18:00	Vorstellung der fertigen Sammlung	Ordner aller Dateien zum Training.
Projektentwicklung	Trainieren & Ausarbeiten	09.10.25	10:00 – 18:00	Modelle Trainieren mit Hilfe von Lars Christian Schmidt	
Projektentwicklung	Trainieren & Ausarbeiten	10.10.25	10:00 – 18:00	Modelle Trainieren mit Hilfe von Lars Christian Schmidt	
Projektentwicklung	Trainieren & Ausarbeiten	13.10.25	10:00 – 14:00		
Finale Präsentation	Vorstellung des Projektes	13.10.25	14:00 – 16:00		15 min Präsentation

Outcomes

- 30sek to 1 min Video of your experiments / outcomes, experiences
- 15 minute presentations of your projects
- Anything additional you come up with, images, booklet, installation, interactive software, text, etc.

Beyond the Workshop



Die Experimente aus dem Workshop "My Al is Better Than Yours"

können hier weiterentwickelt und zu einer umfassenden

Goals

Pick one model, collect a dataset, train from scratch or near-scratch, reflect on results.

Understand Al as a material and cultural process, not a black box.

Goals

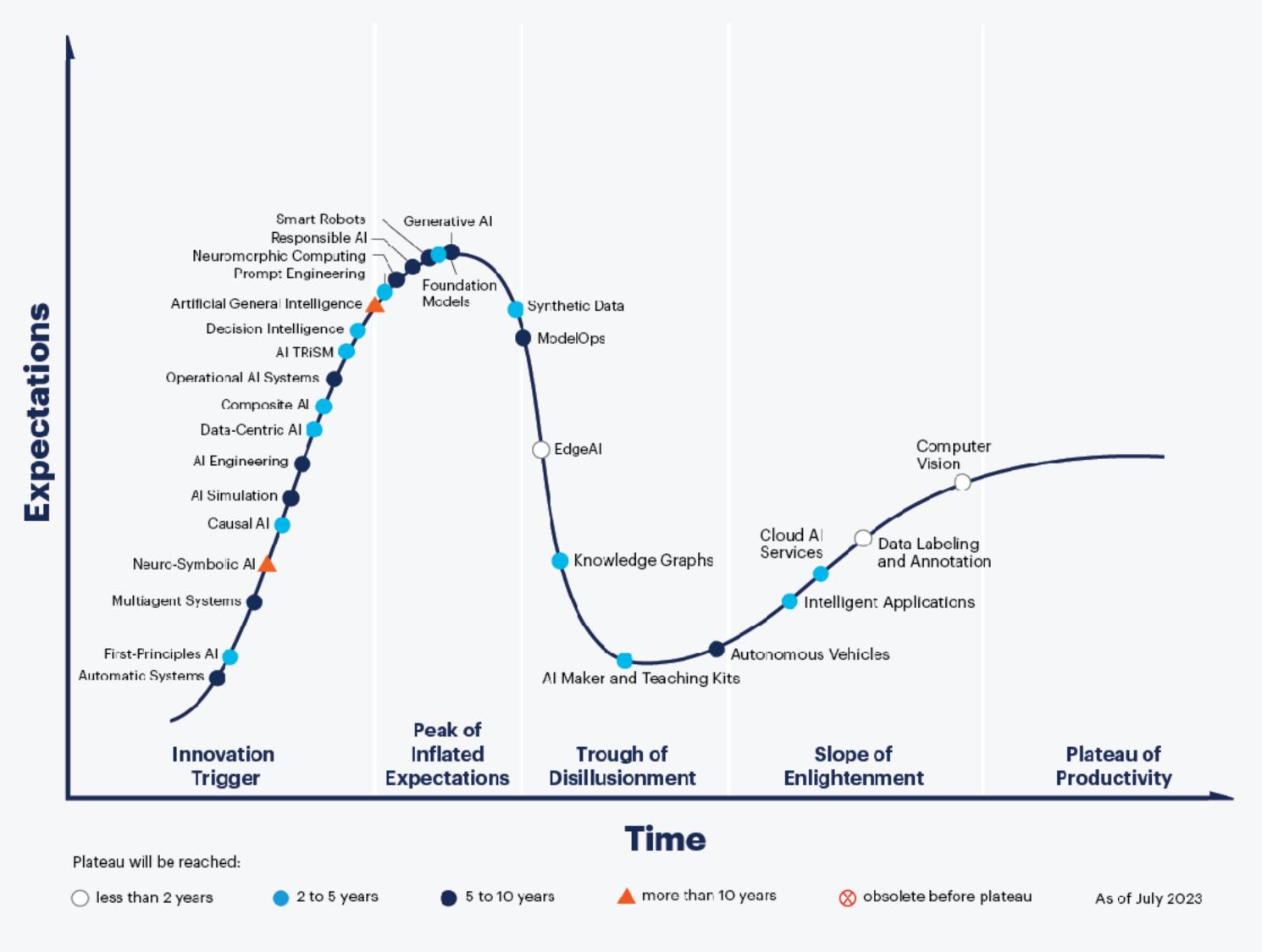
Experiments over outcomes

Strangeness over perfection

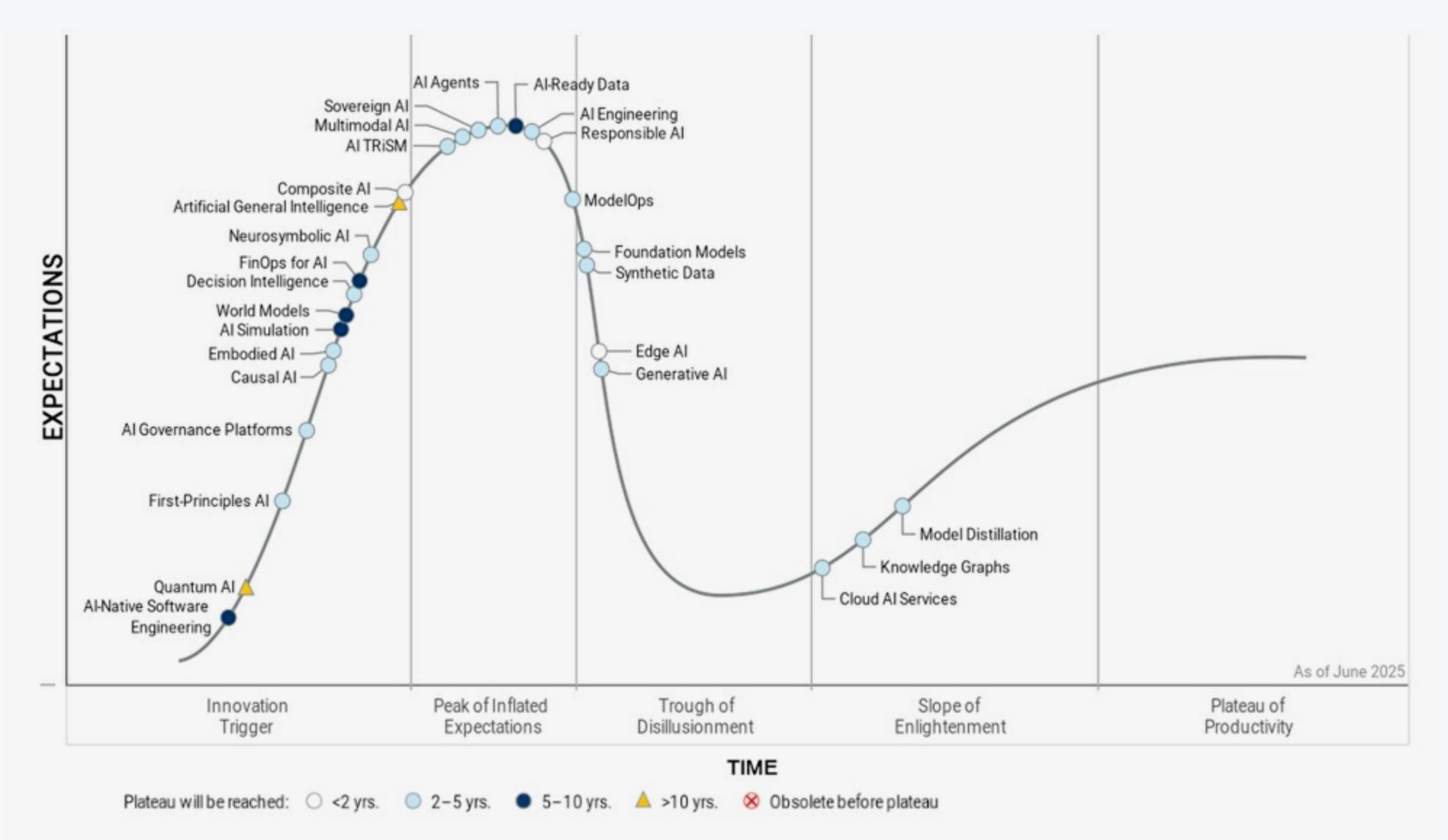
Fun over Exhaustion

State of Al or why it is necessary for us to do this workshop

Hype Cycle for Artificial Intelligence, 2023



gartner.com

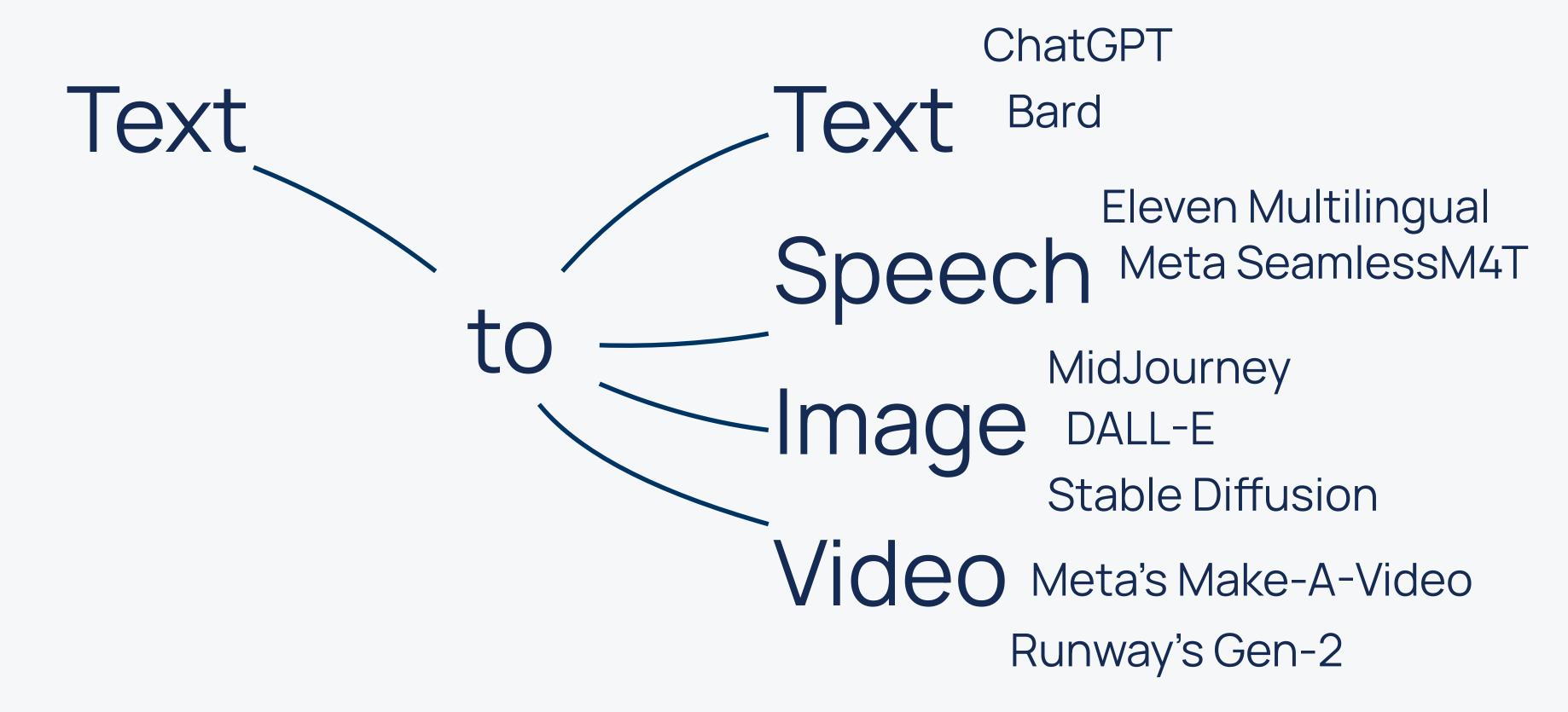


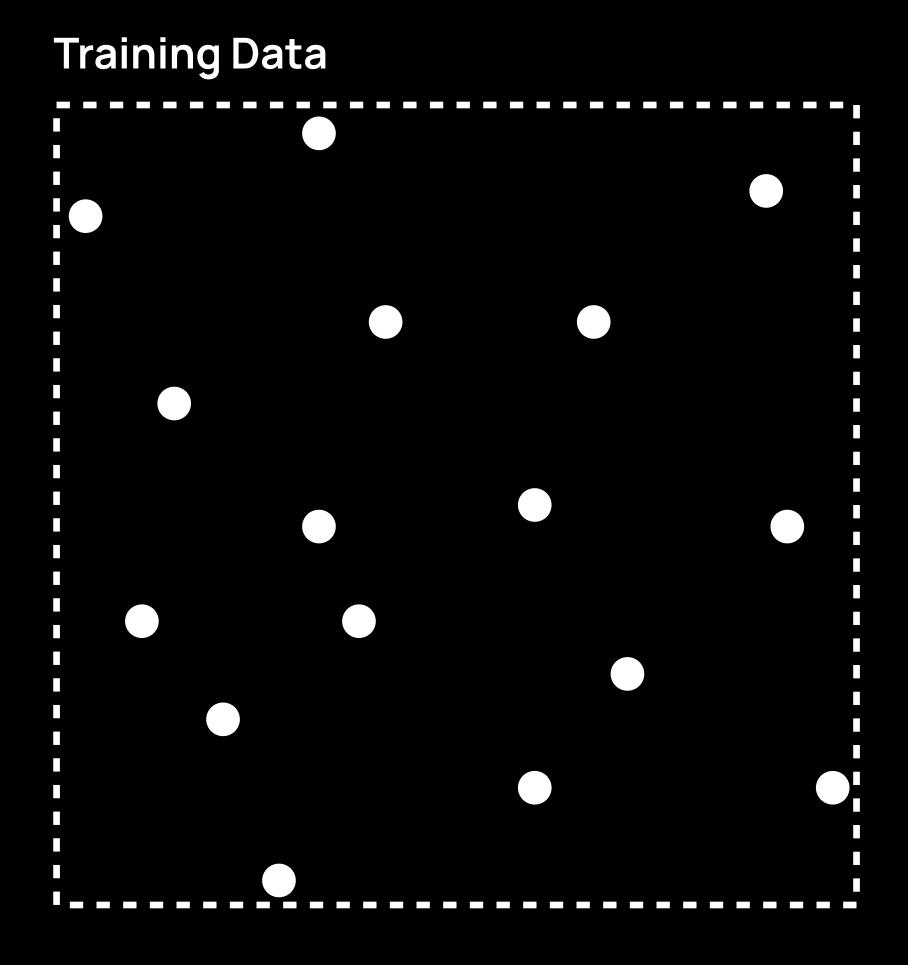
artificial intelligence capable of generating media

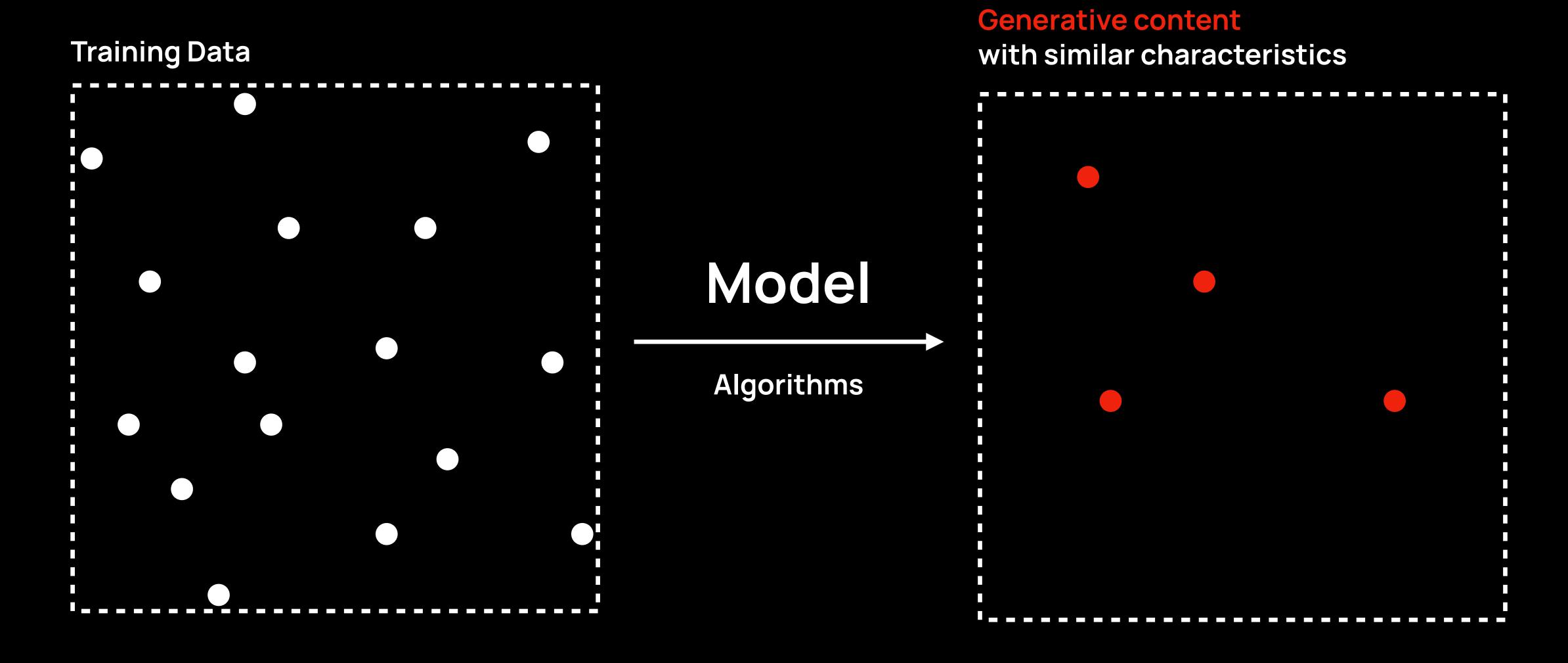
artificial intelligence capable of generating media

Training data → new data with similar characteristics

Tools that convert...



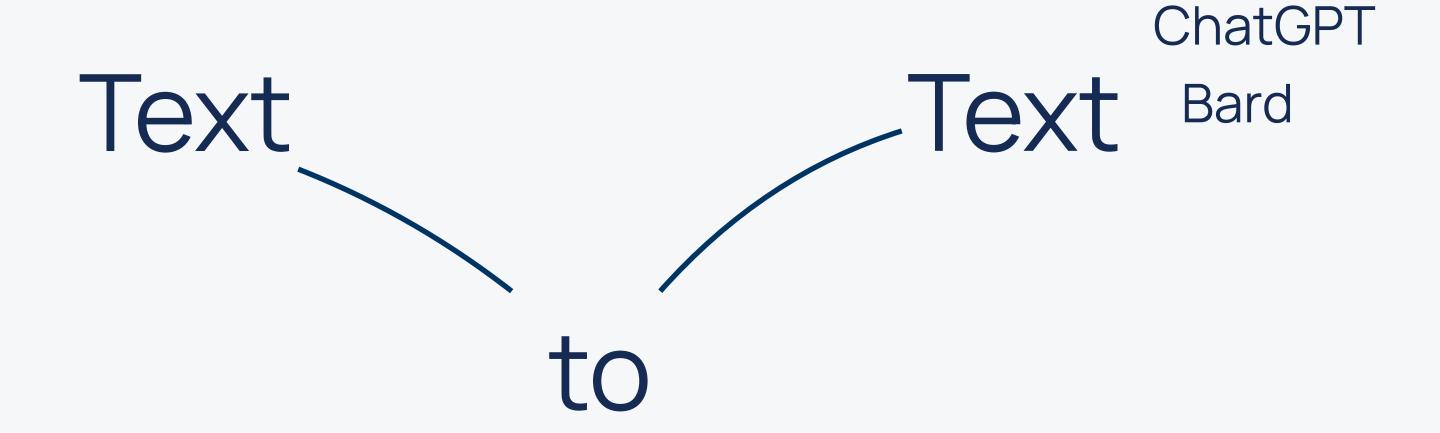




Combination and recombination of patterns from the training data.

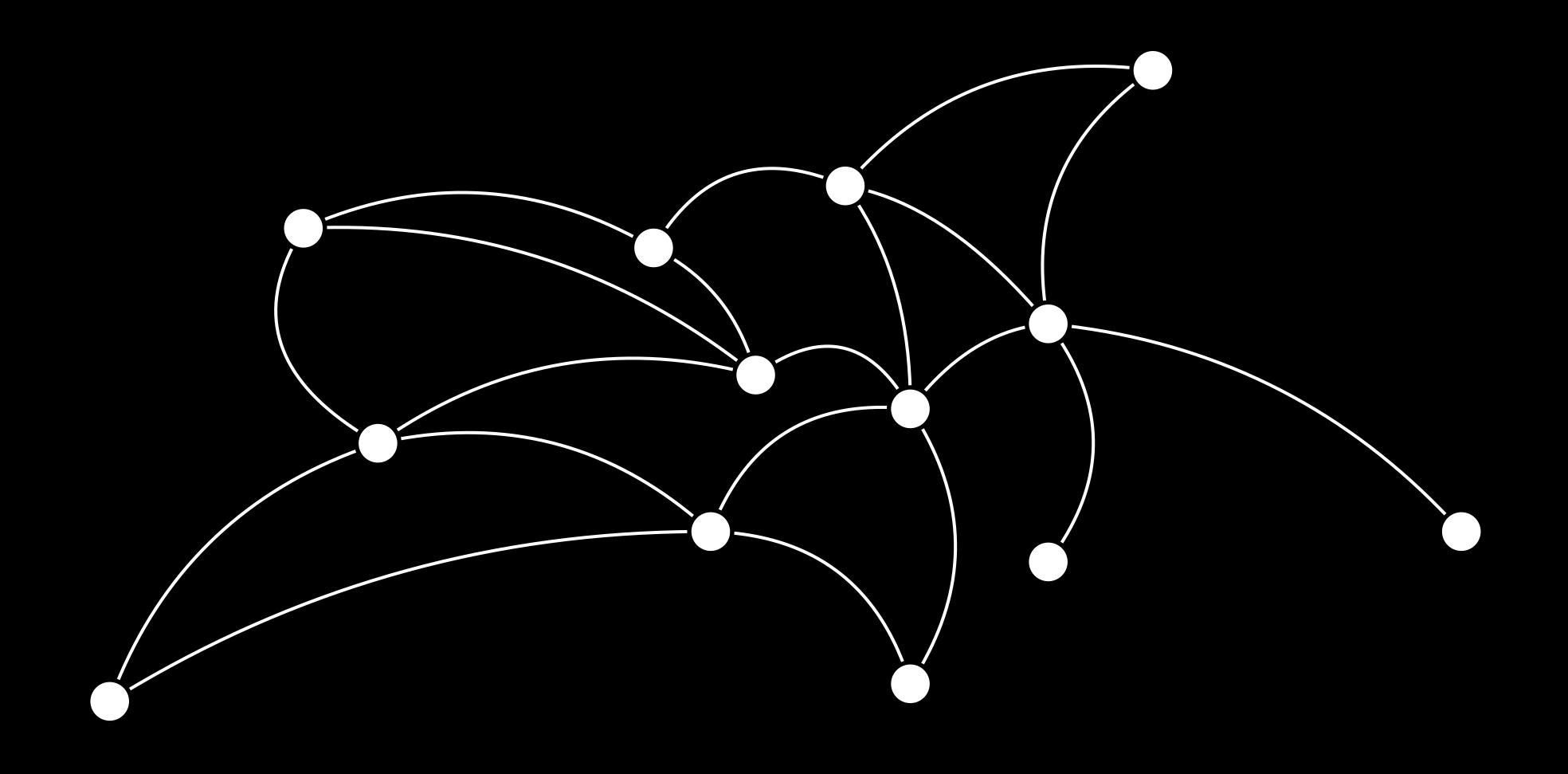
Tools that convert...

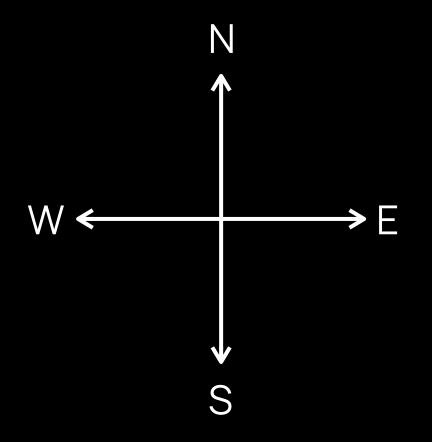
Large language model



»Woesnichtszu berechnen gibt, brauchen wir auch keine Computer.« »Where there is nothing to calculate, we don't need computers.«

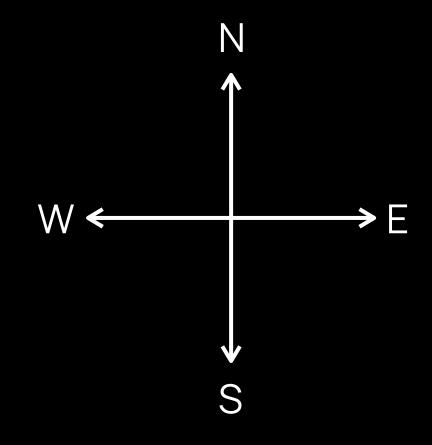
Frieder Nake, Algorithmen & Zeichen





52.5200, 13.4050 Berlin

Potsdam 52.3906, 13.0645



52.5200, 13.4050 Berlin

Frankfurt an der Oder 52.3472, 14.5506

Potsdam 52.3906, 13.0645

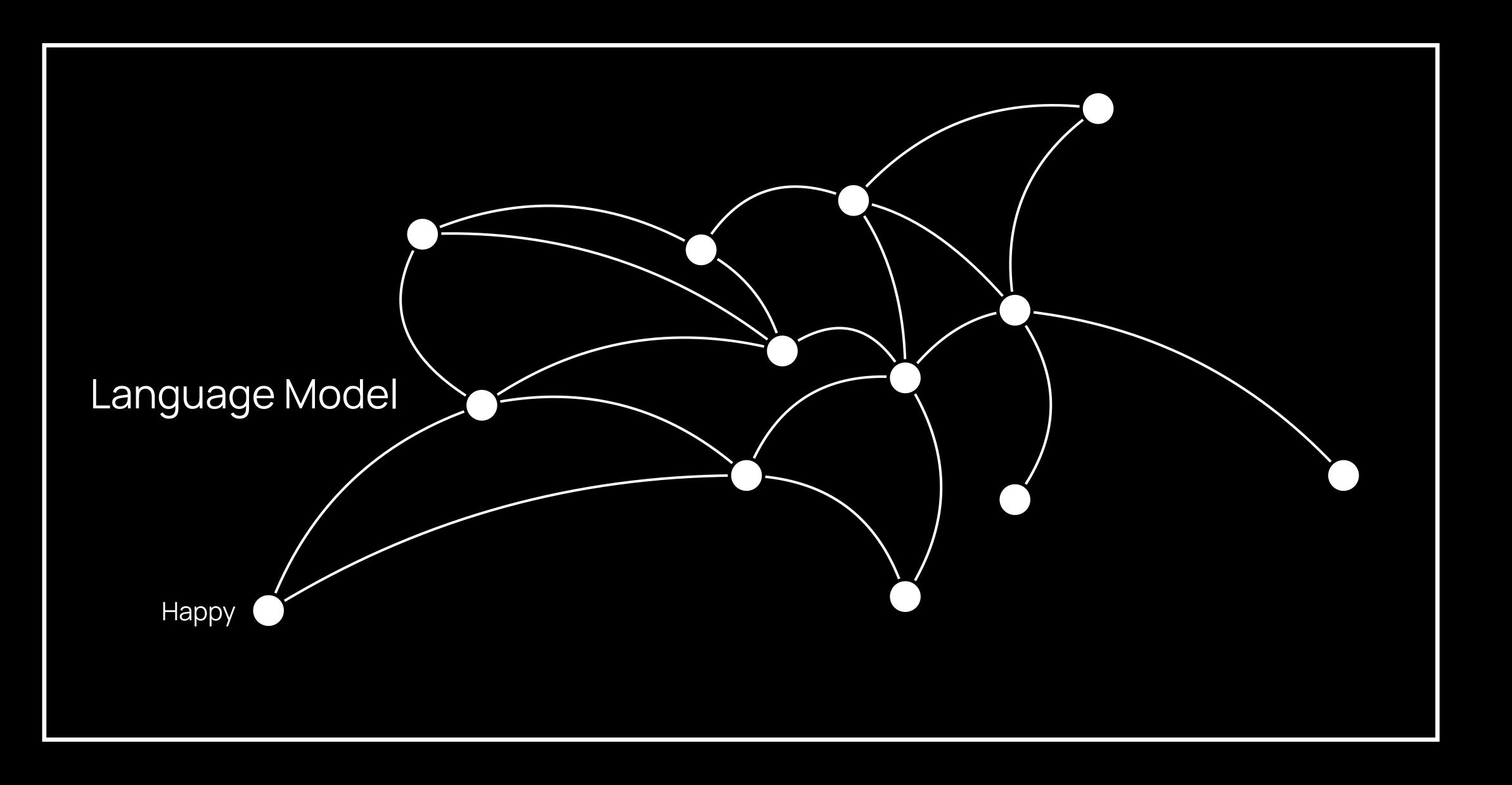
-0.24521, 0.13381, 0.28831, -0.1637, -0.049535, 0.037391, -0.52973, 0.05099, -0.42168, -0.40447, -0.79435, -0.088239, 0.2763, -0.028826, -0.30289, -0.51224, 0.41553, 0.17285, 0.47578, 0.46862, 0.080201, -0.10659, -0.74806, -0.51164, -0.33604, 0.17711, -0.089794, -0.11651, 0.217651, 0.11651, 0.16158, 0.10607, -0.14914, 0.27409, 0.30702, -0.28446, -0.15515, -0.23536, 0.19899, -0.77775, 0.83599, 0.55016, -1.0701, 0.30365, -0.75691, -0.2221, 0.12196, 0.18849, -0.098025, 0.93925, -0.038423, -0.23047, 0.27205, -0.31529, -0.02843, -0.016746, -0.021209, 0.079952, 0.31622 0.064761, -0.23652, -0.01021, -0.55726, 0.038226, -0.17971, -0.072388, 0.14231, 0.94446, -0.36723, -0.63264, -0.22749, 0.47908, -0.66815, -0.041302, -0.41019, 0.14565, 0.12786, -0.62428, 0.09539, -0.20977, -0.24609, -0.40151, 0.47429, 0.010771, 0.82454, 0.33783, 0.12811, 0.2199 0.38581, 0.01102, 0.31732, 0.29965, 0.03711, -0.025396, 0.48878, -0.065962, -0.12585, -0.67172, 0.71344, -0.52369, -0.68097, 0.43216, 0.07 -0.11568, -0.38967, -0.21208, -0.27753, 0.30311, -0.51805, 0.28916, -0.26186, -0.009617, -0.40885, 0.21191, -0.052608, -0.1316, 0.96776, -0.2 0.47056, -0.31982, 0.095621, -0.32895, -0.55728, 0.32756, 0.86118, 0.33973, 0.14936, -1.0919, 0.28923, -0.36886, -0.052346, -0.13595, -0.049021, -0.39374, -0.17264, -0.099287, 0.24752, 0.48518, -0.83403, 0.072445, -0.47082, 0.60437, 1.0859, 0.57208, 0.1354, 0.028308, 0.028308, 0.03808, 0.038308, 0.036348, -0.22297, 0.064423, 0.159, -0.77674, 0.30433, -0.04432, -0.34273, -0.34202, 0.24068, 0.3029, 0.13857, 0.5047, 0.57522, 0.17839, 0.41169, -0.33658, 0.18725, -0.46583, 0.13571, 0.23891, 0.83214, -0.13962, -0.16713, -0.31497, -0.37804, 1.0744, 0.42999, -0.80921, 0.88273, 0.94068, 0.56096, -0.075746, -0.14008, -0.3128, 0.45362, -0.17636, 0.25203, 0.45339, 0.006271, 0.79116, -1.1023, 0.37591, 0.44677, 0.04936 -0.39339, -0.72904, -0.47843, 0.029577, -0.59435, 0.13464, -0.51627, 0.837, -0.58194, 0.046615, -0.3937, 0.66203, 0.48482, -0.17065, 0.332 0.12285, -0.045335, -0.27725, -0.001421, -0.058123, 0.63951, 0.77633, 0.35478, 0.14914, -0.65503, 0.52402, -0.53852, -0.37985, 0.37724, 0. 0.21311, 0.049646, 0.16984, -0.33992, 0.55786, 0.38667, -0.84554, 0.28118, 1.1596, -0.70108, -0.74602, -0.23631, 0.22675, -0.46052, 0.2394 0.1382, -0.42704, -0.89916, -0.017155, -0.18568, -0.51684, 0.56688, -0.051546, -0.69499, 0.017353, 0.57945, -0.027723, -0.012037, -0.18122 -0.40603, -0.43229, -0.27754, 0.001625, -1.0812, -0.85345, -0.26496, -0.45327, -0.51637, 0.49035, -0.27177, -0.59652, 0.97047, -0.43425, -0.4342-0.16713, -0.012096, 0.12838, 0.9593, -0.25205, 0.25473, -0.38155, -0.10364, 0.50817, 0.74453, 0.2516, -0.52587, 0.41403, 0.70447, 0.56725, -0.76822, 0.38446, 0.65434, -0.4701, 0.11068, 0.84786, -0.50158, -0.73509, 0.028486, -0.39405, -0.19661, -0.49297, 0.21677, 0.46745, -0.876822, 0.38446, 0.65434, -0.49297, 0.21677, 0.46745, -0.876822, 0.38446, 0.65434, -0.49297, 0.21677, 0.46745, -0.876822, 0.38446, 0.65434, -0.49297, 0.21677, 0.46745, -0.876822, 0.38446, -0.50158, -0.50158, -0.73509, 0.028486, -0.39405, -0.19661, -0.49297, 0.21677, 0.46745, -0.876822, 0.384786, -0.50158, -0.73509, 0.028486, -0.39405, -0.19661, -0.49297, 0.21677, 0.46745, -0.876822, 0.384786, -0.50158, -0.73509, 0.028486, -0.39405, -0.19661, -0.49297, 0.21677, 0.46745, -0.876822, 0.384786, -0.50158, -0.73509, 0.028486, -0.39405, -0.19661, -0.49297, 0.21677, 0.46745, -0.876822, 0.384786, -0.50158, -0.73509, 0.028486, -0.39405, -0.19661, -0.49297, 0.21677, 0.46745, -0.876822, 0.84786, -0.501582, -0.73509, 0.028486, -0.39405, -0.19661, -0.49297, 0.21677, 0.46745, -0.876822, 0.84786, -0.501582, -0.786822, 0.84786, -0.501582, -0.886822, 0.84786, -0.886822, 0.84786, -0.886822, -0.886822, 0.80.70179, 0.16544, 0.26561, 0.46307, -0.34402, 0.34357, -0.97758, 0.42855, -0.088987, -0.50831, 0.73807, 0.66019, 0.33652, -0.14058, -4.827

-0.17123, 0.28438, -0.69702, 0.052258, -0.28428, 0.28932, -0.14343, 0.10838, -0.073325, 0.36498, -0.1145, 0.51698, 0.039328, 0.54644, -0.4

-0.038352, 0.067462, -0.44783, -0.009301, -0.56002, -0.32046, 0.10558, 0.00215, -0.29051, 0.032734, 0.53683, 0.78655, -1.5857, 0.062173

-0 29321 014442 0 26699 0 92783 0 43608 0 08423 019892 -0 63507 0 37158 0 82915 0 51322 -0 09333 -018363 017964 018824

Happy



Language Model

Given a sequence of words, produce the probability distribution of the next word.

The cow went to the _____

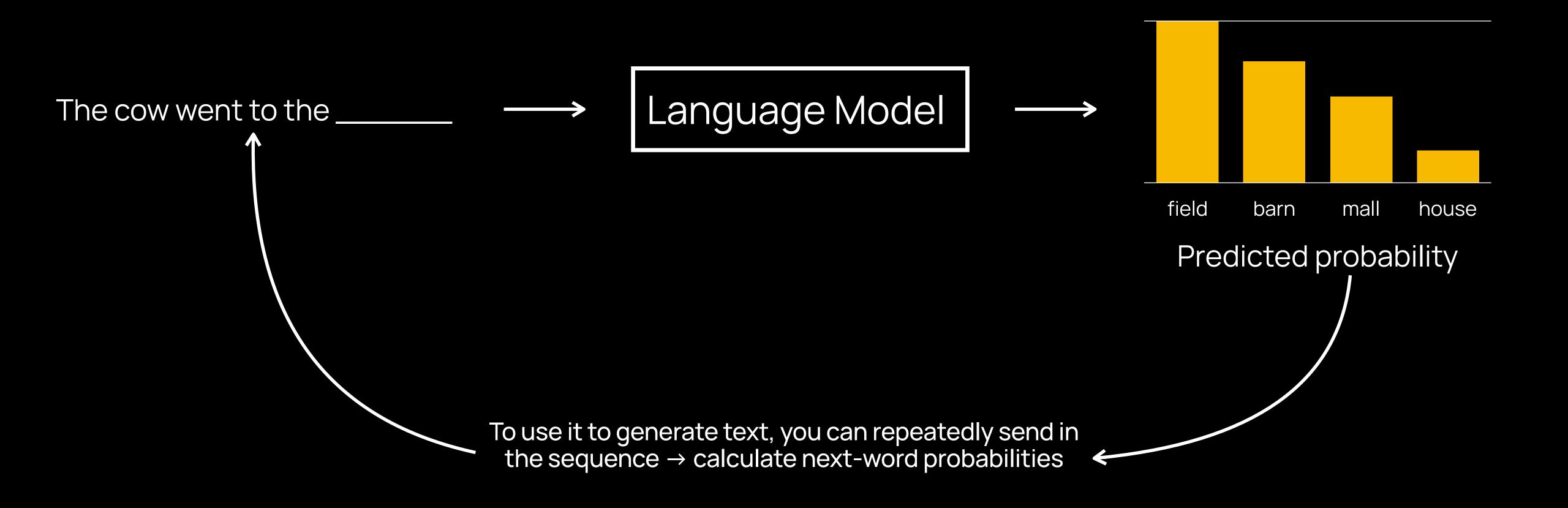
Language Model

Given a sequence of words, produce the probability distribution of the next word.

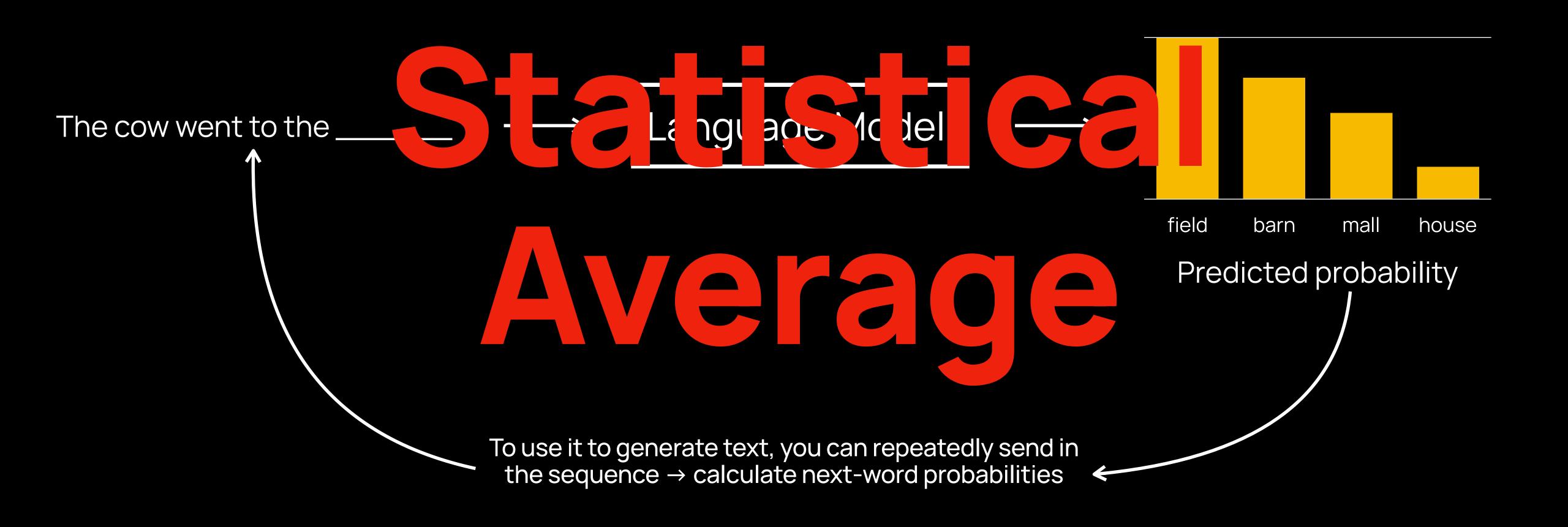
The cow went to the _____
Language Model

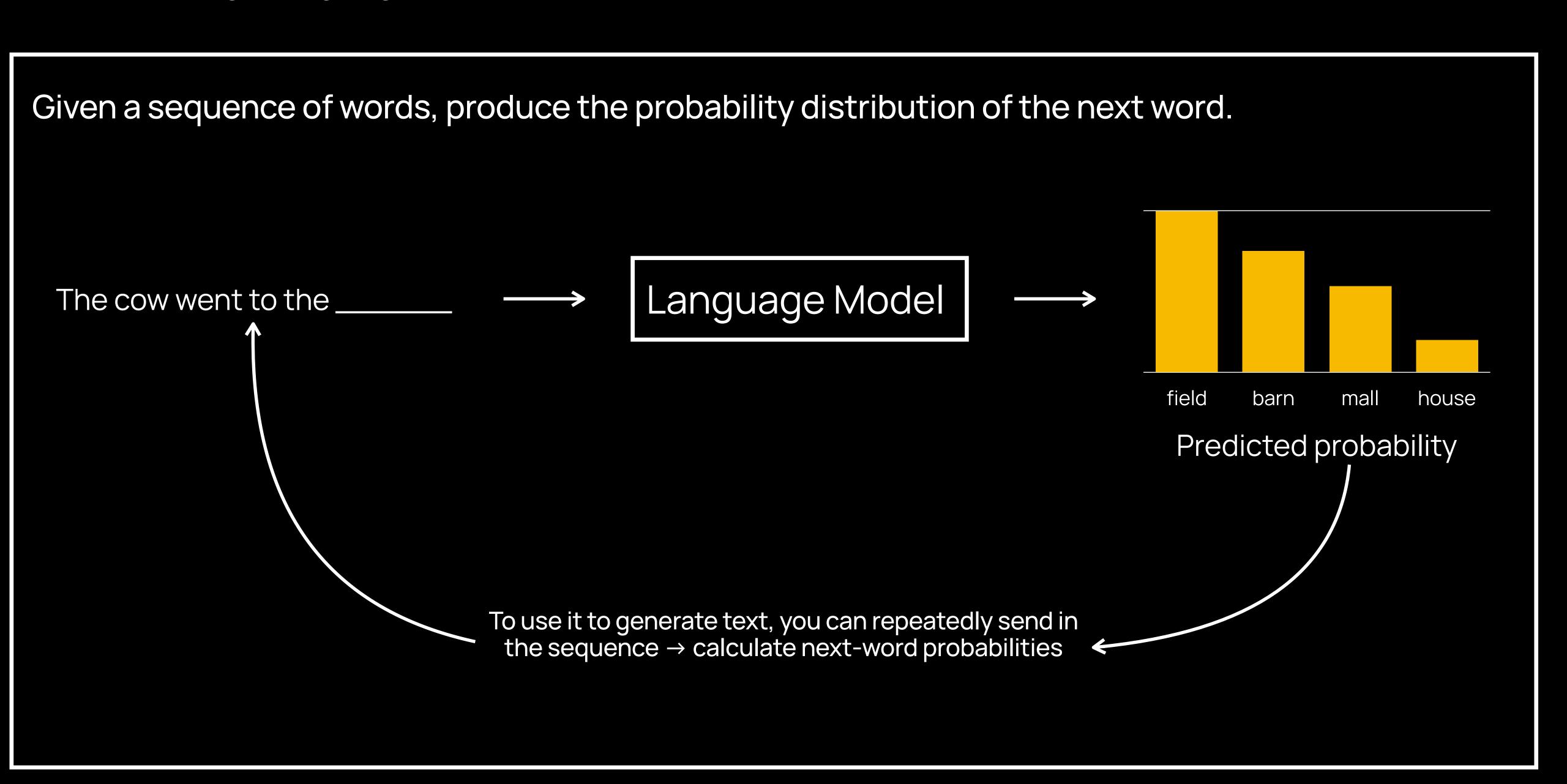
field barn mall house
Predicted probability

Given a sequence of words, produce the probability distribution of the next word.



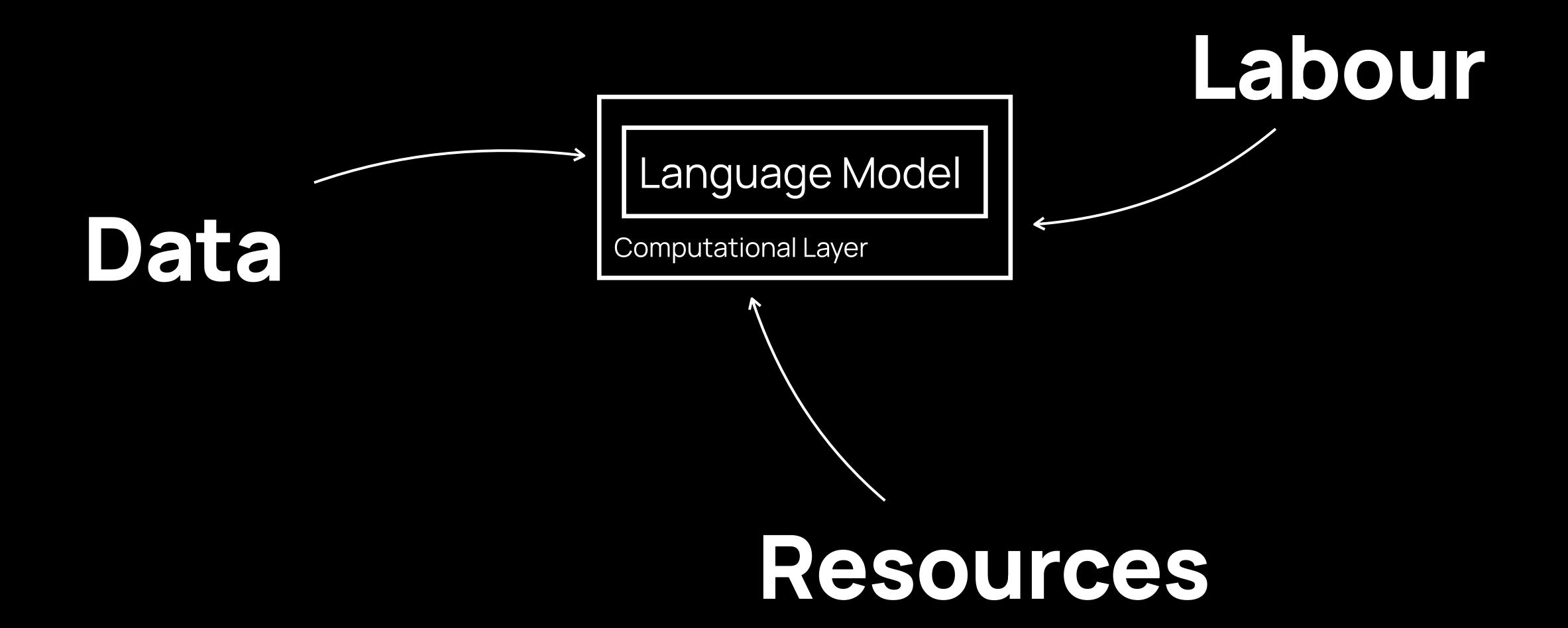
Given a sequence of words, produce the probability distribution of the next word.





Language Model

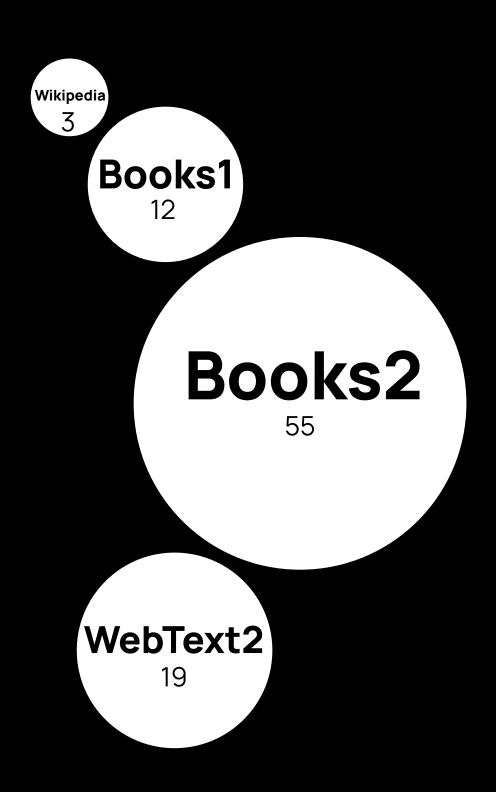
Computational Layer

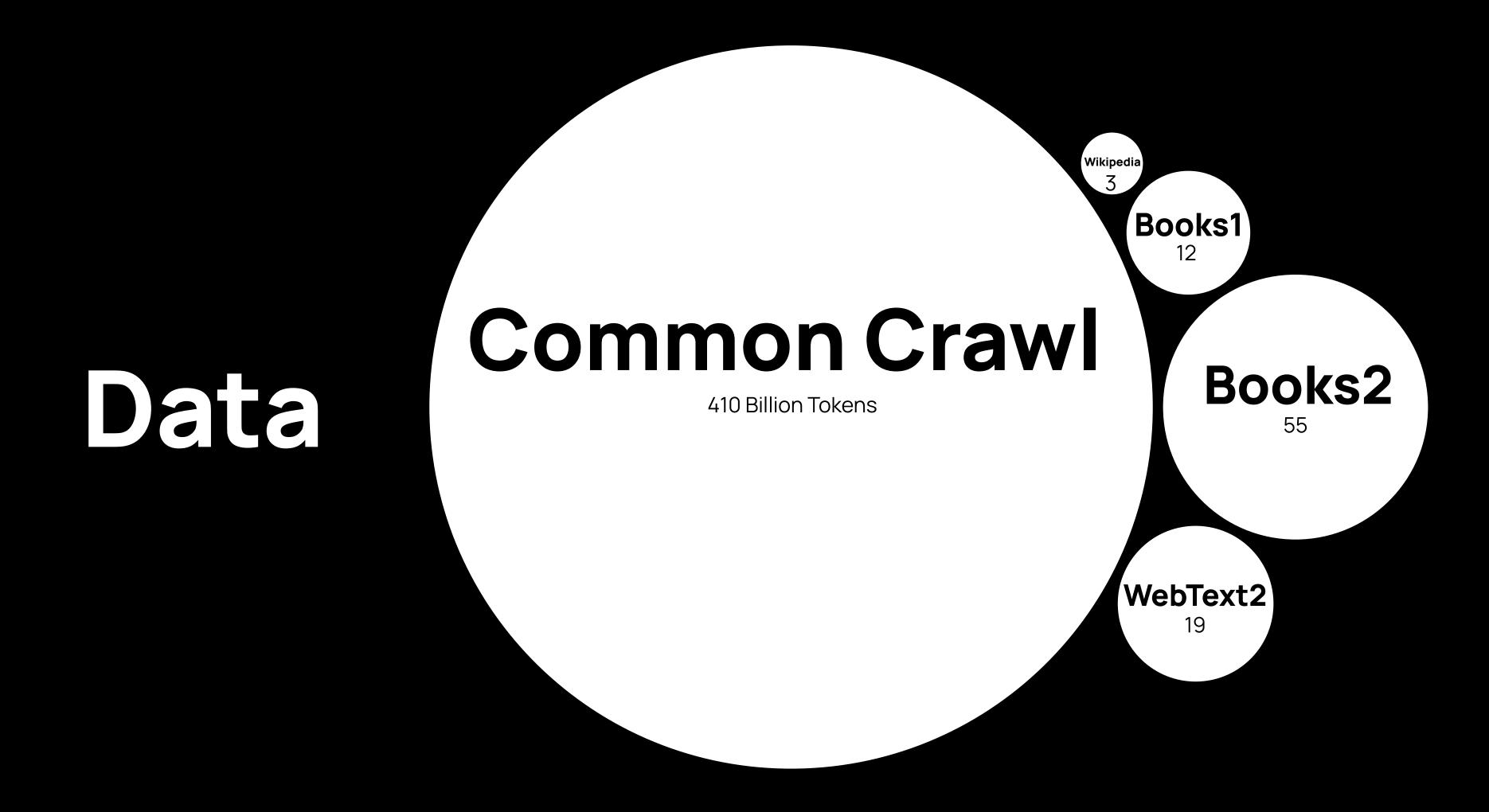


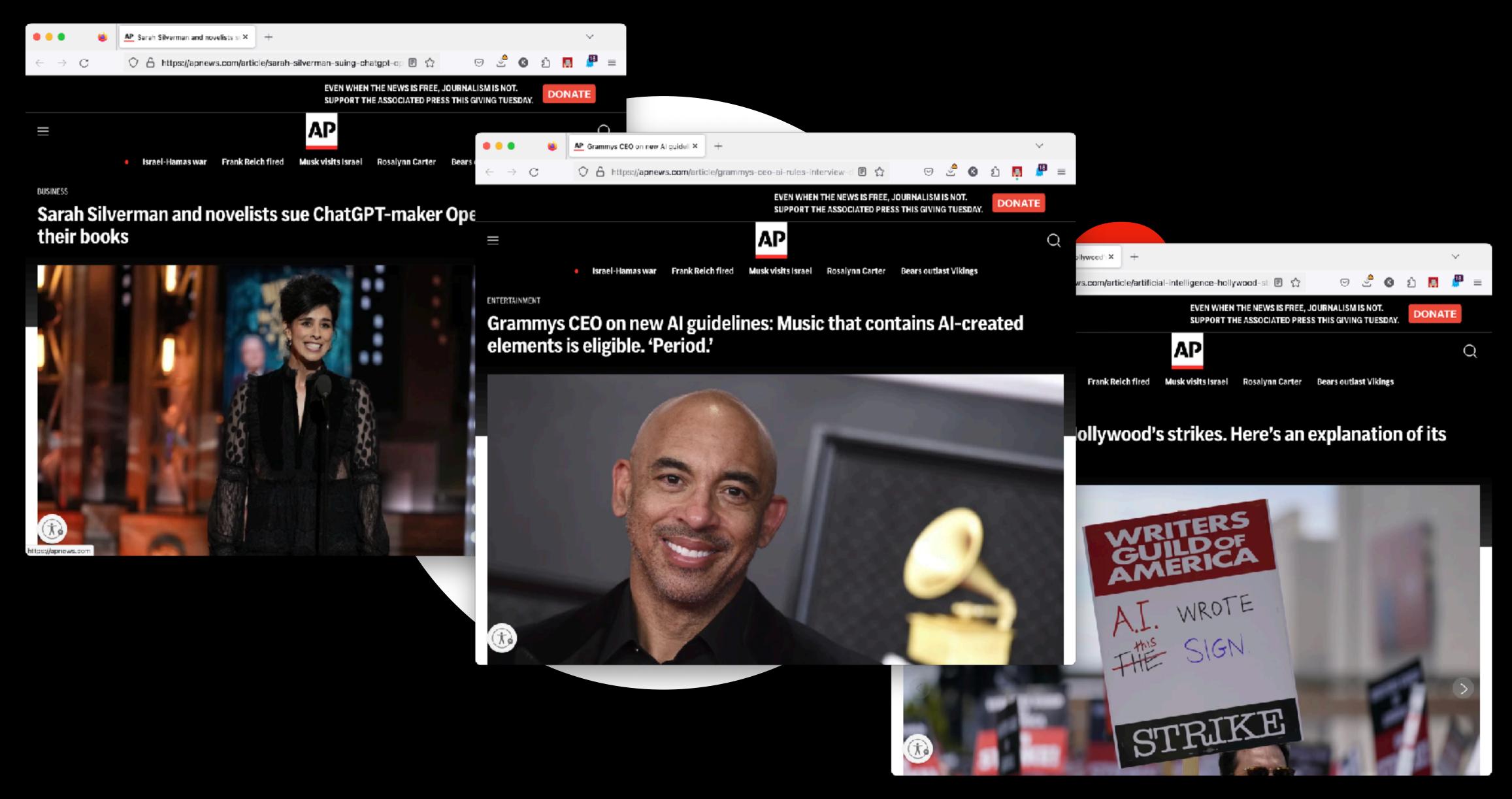
Data

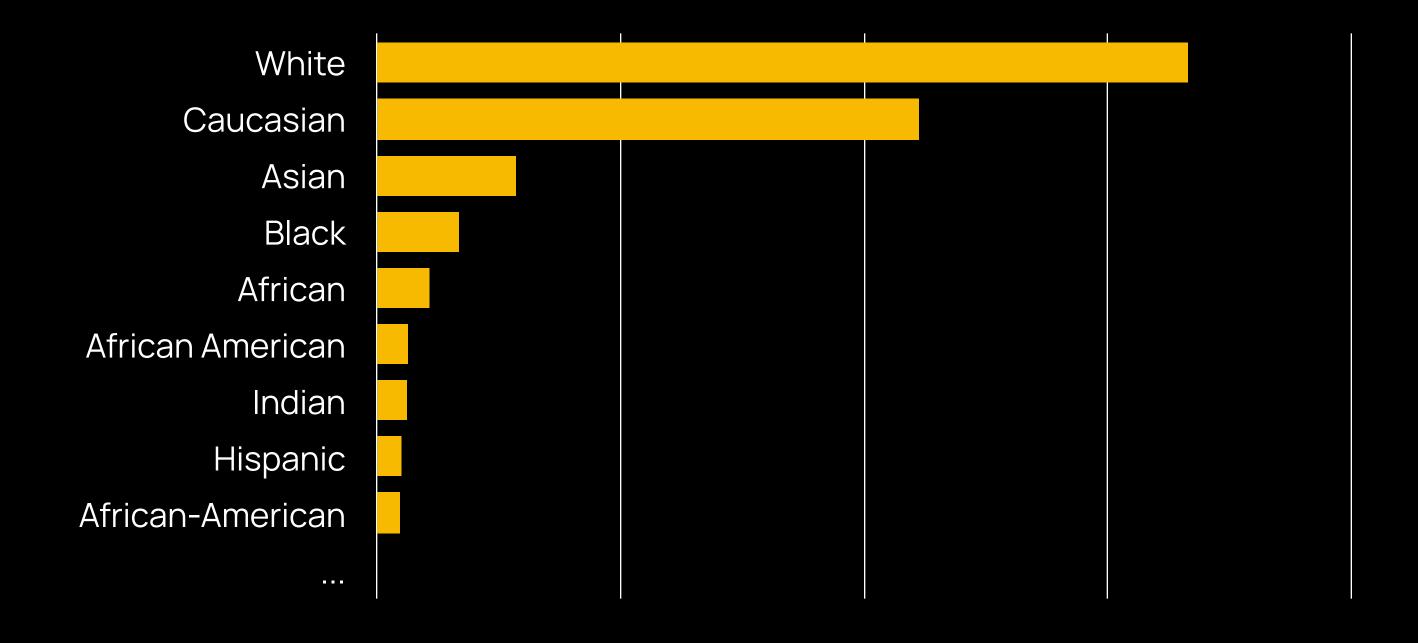
Data

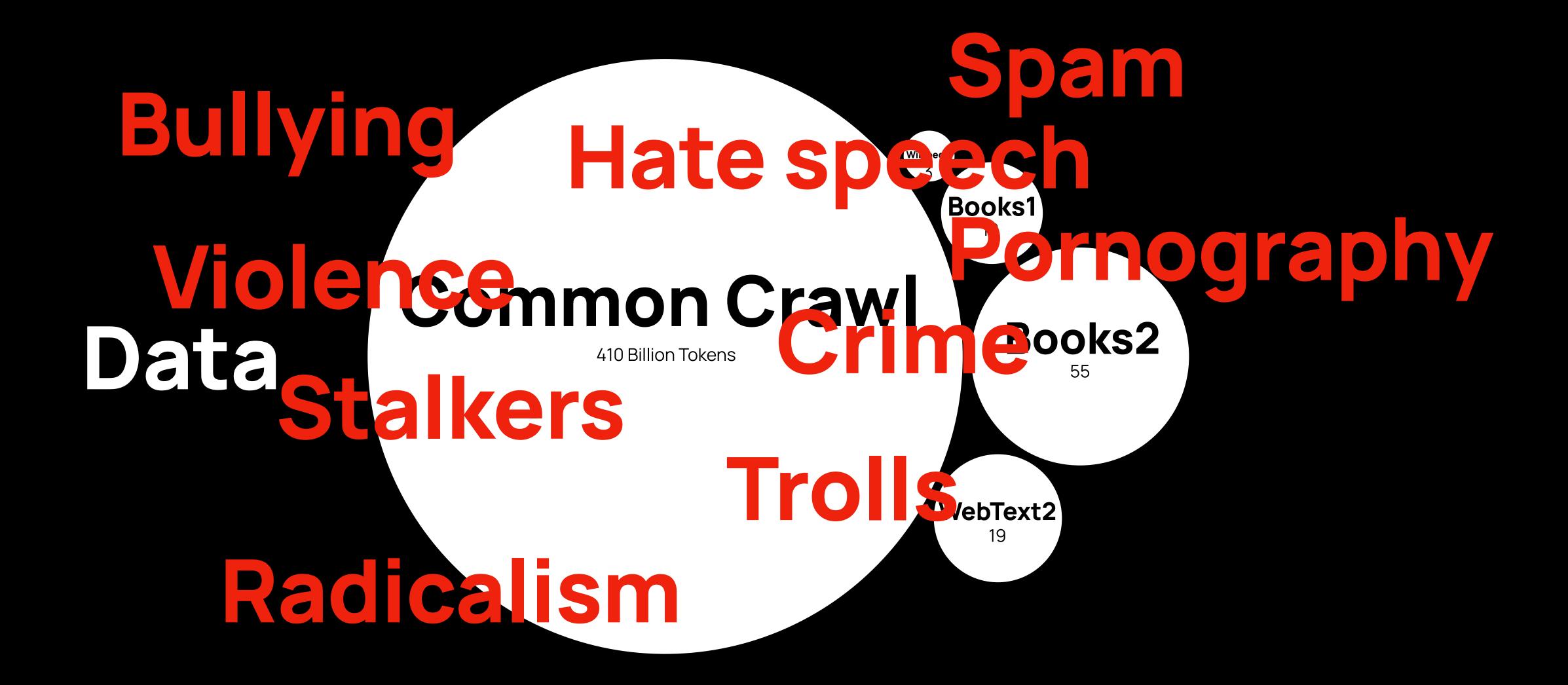
Data

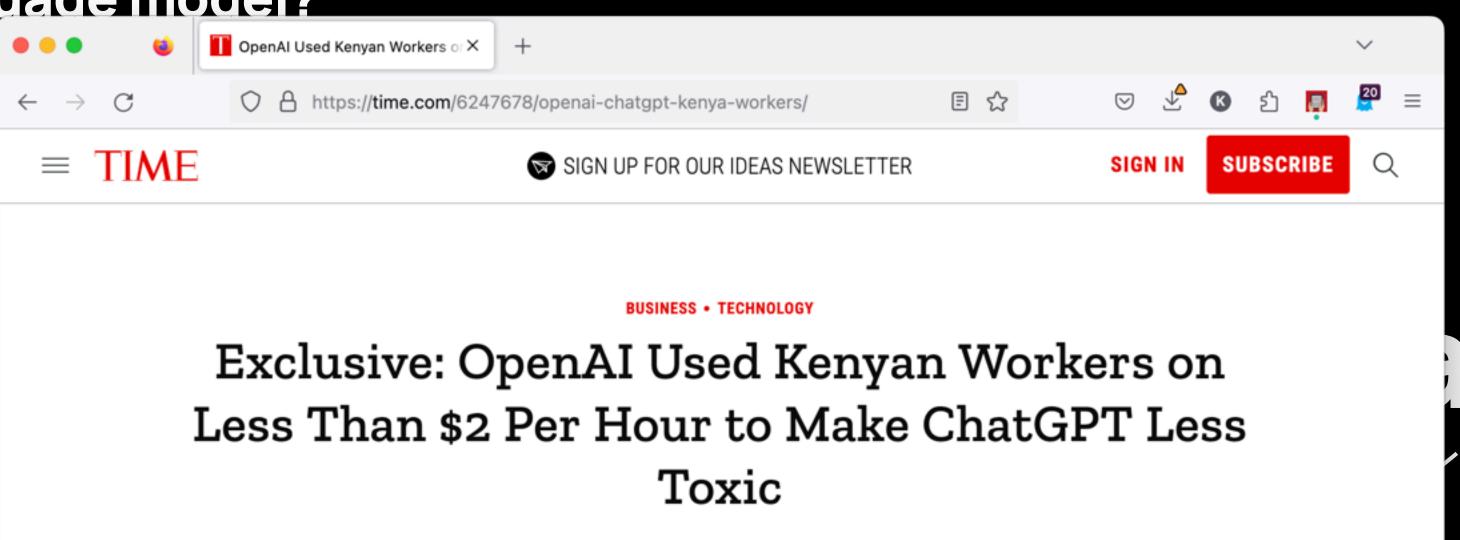




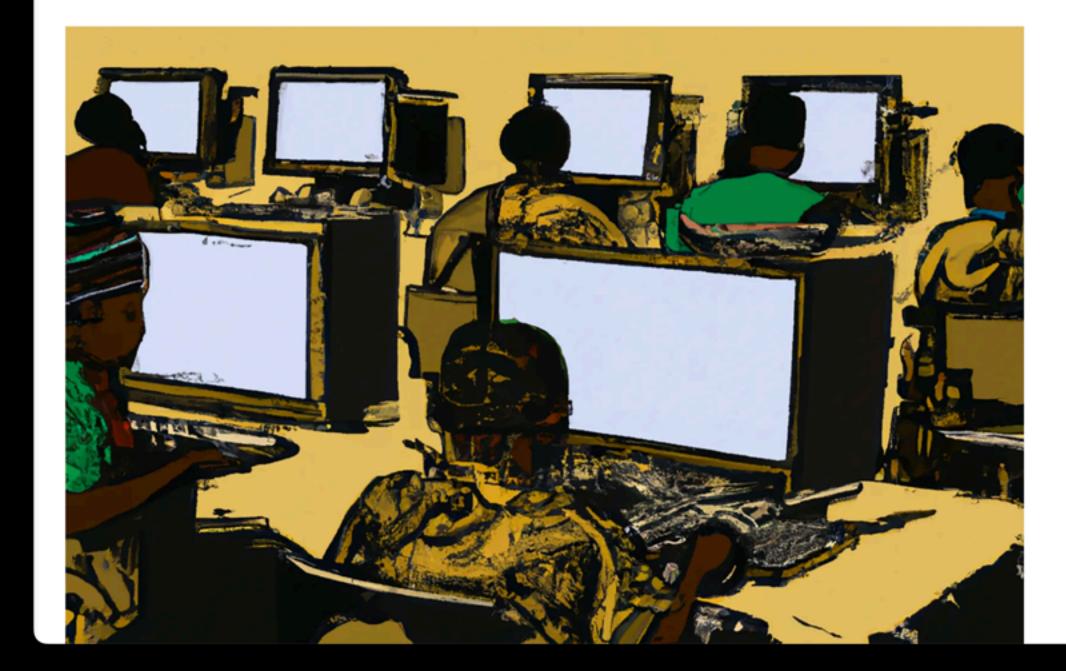




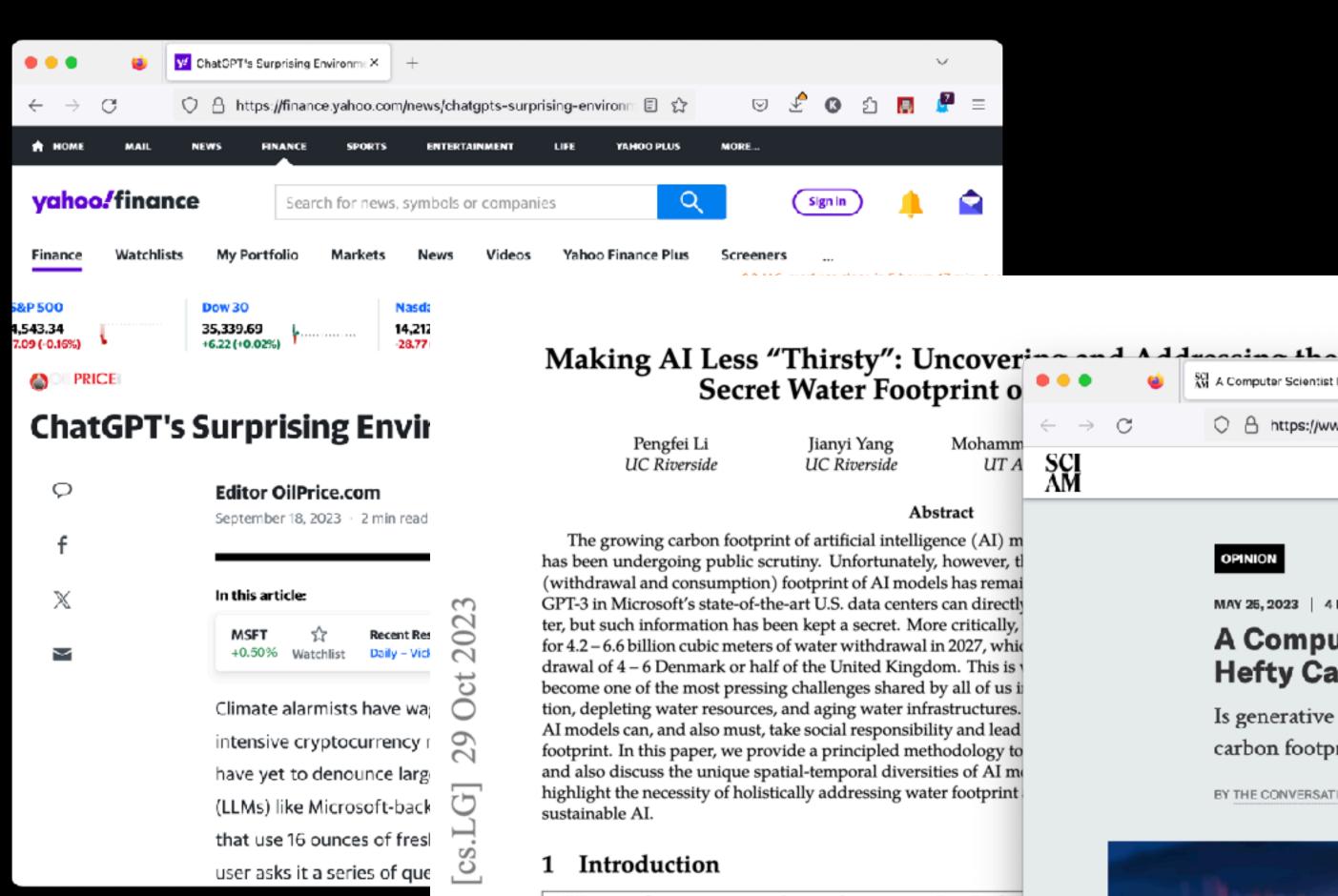




Data



bour



:2304.03271

arXiv

- "Water is a finite resource, and every drop matters." Faceboo
- "Fresh, clean water is one of the most precious resources on E support water security and healthy ecosystems." - Google's Wa
- "Water is a human right and the common development denor is in deep trouble." — U.N. Secretary-General António Guterres at
- "Historic droughts threaten our supply of water ... As the s security is central to human and national security." - U.S. White 2022 [4].

Artificial intelligence (AI) models have witnessed remarkabl areas of critical importance to our society over the last decade, several global challenges such as climate change [5]. Increasingly on power-hungry servers housed inside warehouse-scale data hogs [6]. Consequently, despite the numerous benefits and pote AI models, in particular carbon footprint, has been undergoing t

MAY 25, 2023 4 MIN READ

AM A Computer Scientist Breaks Do X +

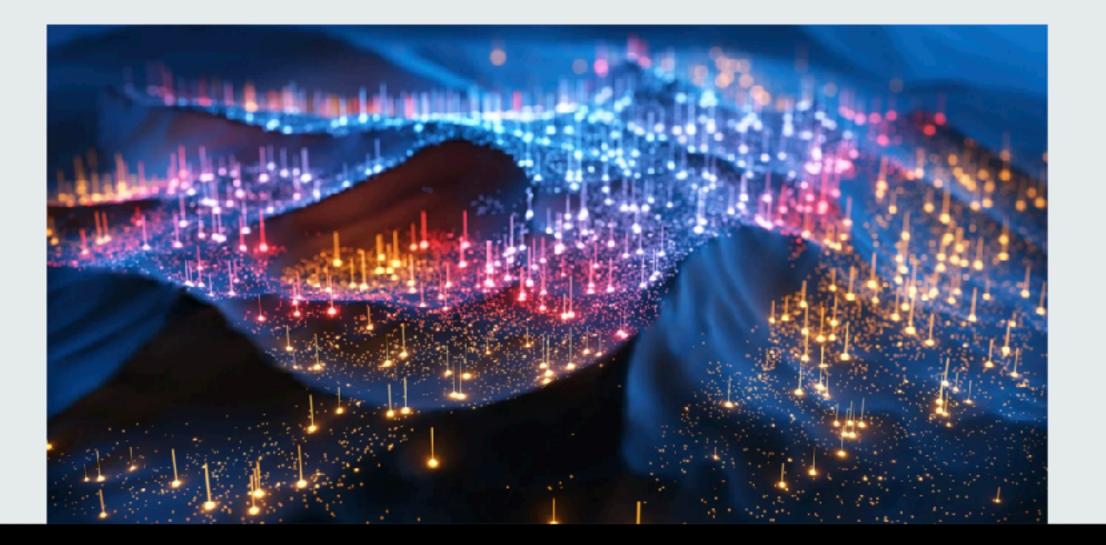
A Computer Scientist Breaks Down Generative Al's **Hefty Carbon Footprint**

Sign Up for Our Daily Newsletter

○ A https://www.scientificamerican.com/article/a-computer-scientist-break 🗉 🏠

Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins—and how to reduce it

BY THE CONVERSATION US & KATE SAENKO



Abusive Labour

Stolen

Data

Hate Radicalism

Violence

Language Model

Computational Layer

Rare Earth Materials

Resources

Water

Electricity

Average culture based on stolen data.

*Based on Hito Steyerl notion of mean images https://criticalai.art/hito.html

Cultuteano creativity are more than a statistical average of past stolen data.

»And due to the capital required to build Al at scale and the ways of seeing that it optimizes Al systems are ultimately designed to serve existing dominant interests. In this sense, artificial intelligence is a registry of power«

»And due to the capital required to build Al at scale and the ways of seeing that it optimizes Al systems are ultimately designed to serve existing dominant interests. In this sense, artificial intelligence is a registry of power«

Reclaiming power

"Big Dick Data is a formal, academic term that we, the authors, have coined to denote big data projects that are characterized by patriarchial, cismasculinist, totalizing fantasies of world domination as enacted through data capture and analysis."

Data Feminism, Catherine D'Ignazio and Lauren Klein, 2022 https://data-feminism.mitpress.mit.edu/pub/czq9dfs5/release/3

"Building one's own smallscale datasets for creative ML can be seen as one way of subverting the power structures that reign Al development."

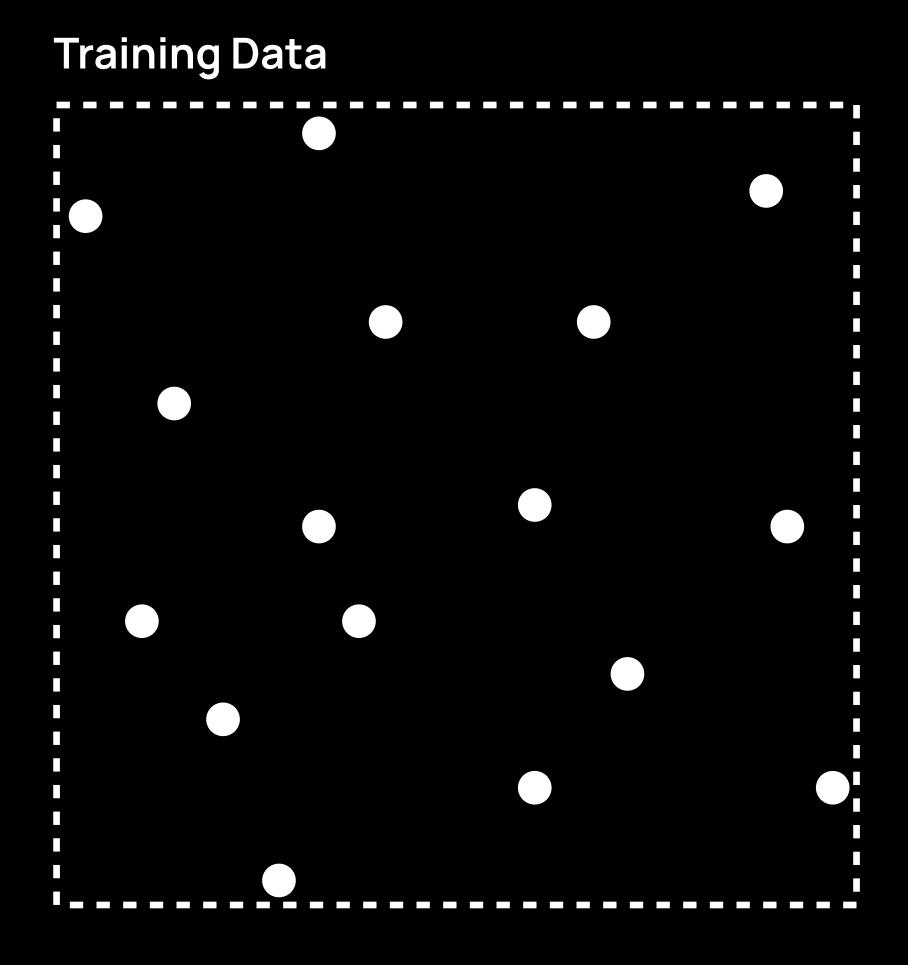
Vigliensoni, Perry, and Fiebrink, A Small-Data Mindset for Generative Al Creative Work, 2022

"Personal, bespoke data can be a powerful way to make useful models (sometimes more powerful than big, general-purpose data!)"

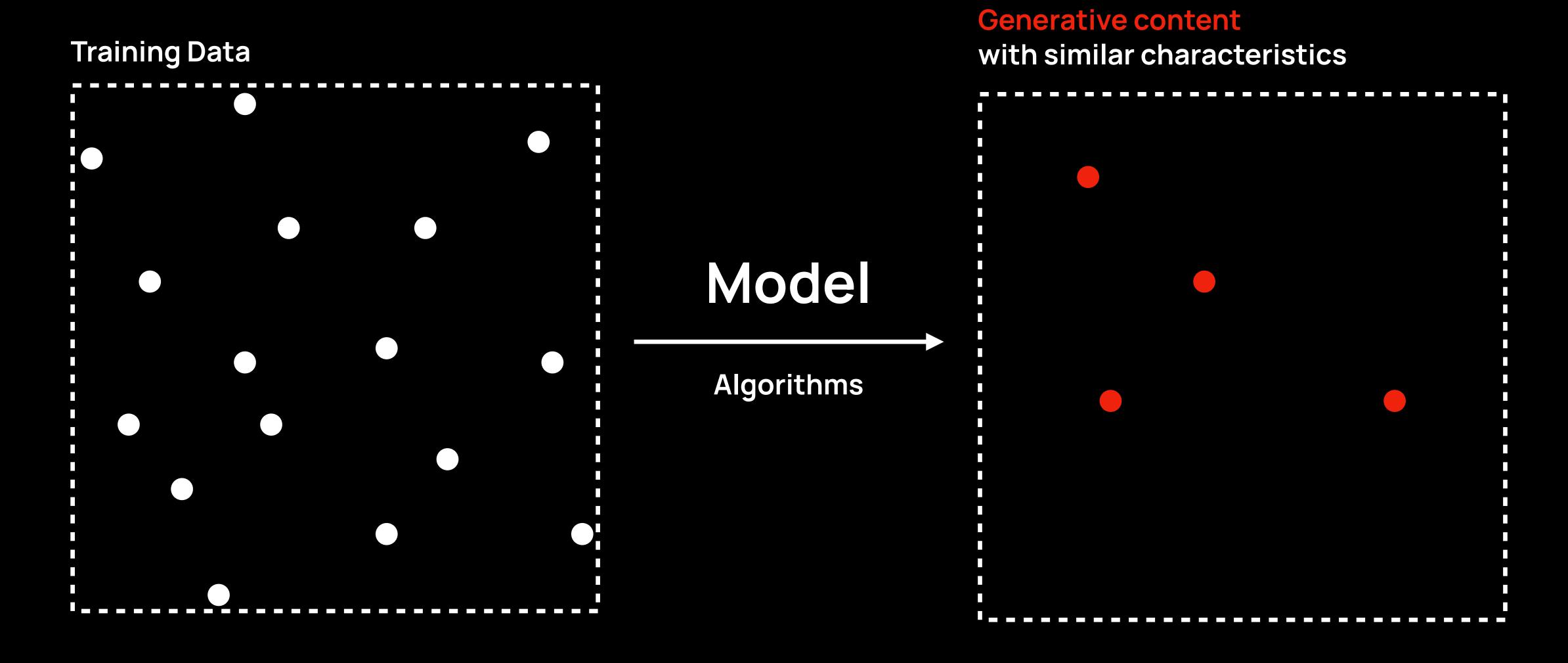
Rebecca Fiebrink, xCoAx Conference V&A Museum Dunde 2025

Models to Explore

Generative Al



Generative Al



Combination and recombination of patterns from the training data.

Models

Classifier

Generative FastGAN

adversarial Pix2Pix
network (conditional GAN)

Fine Tuning

1950s–1980s (Perceptron, Decision Trees)

Models & Histories

AlexNet wins ImageNet (2012), showing deep neural nets outperform classical classifiers.

Classifier

2014 (Goodfellow et al.)
DCGAN (2015) → Pix2Pix
(2016) → StyleGAN (2018)
→ fuels art/A.l. boom.

FastGAN

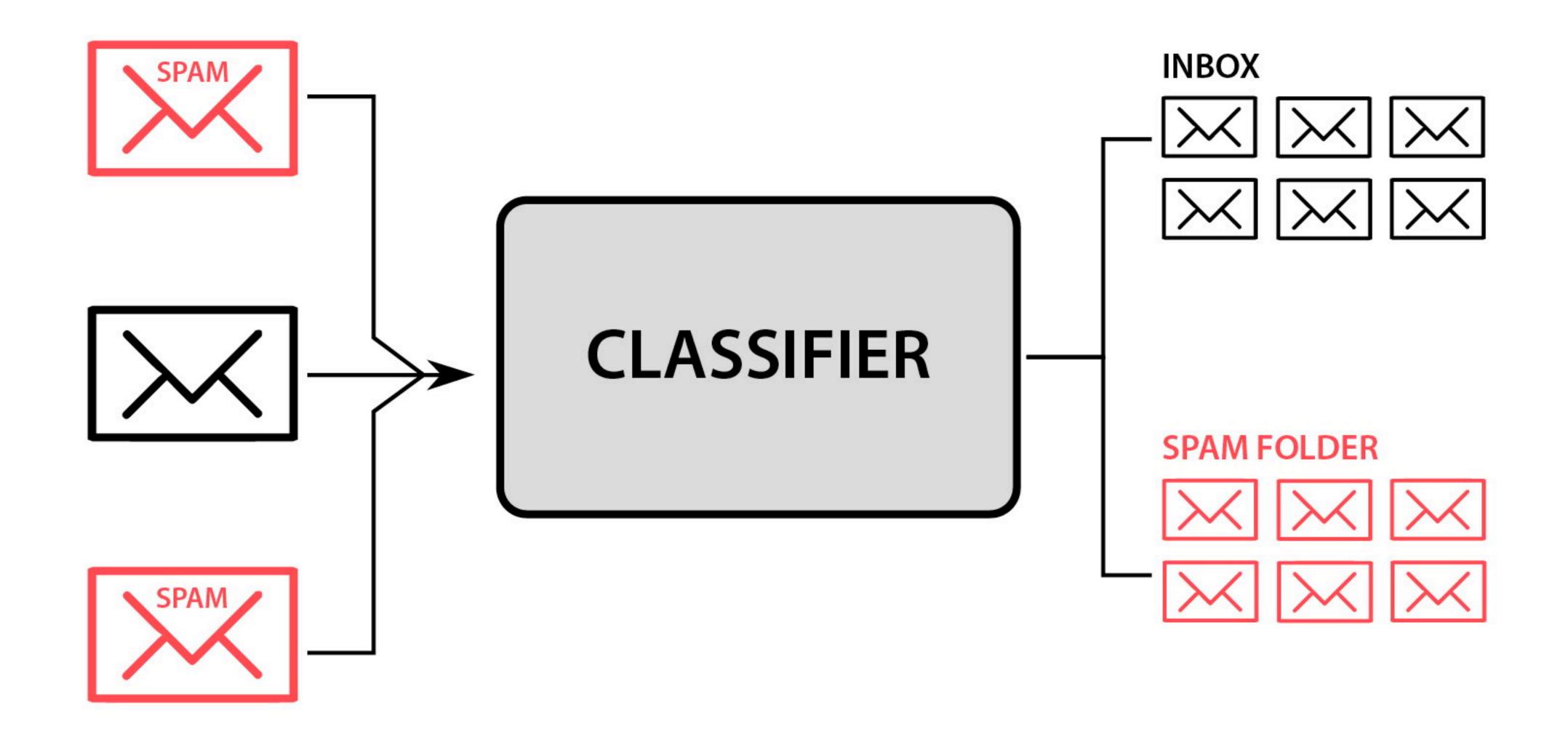
Pix2Pix (conditonal GAN)

Fine Tuning

2006 (early neural nets) → 2018+ (Transfer Learning)

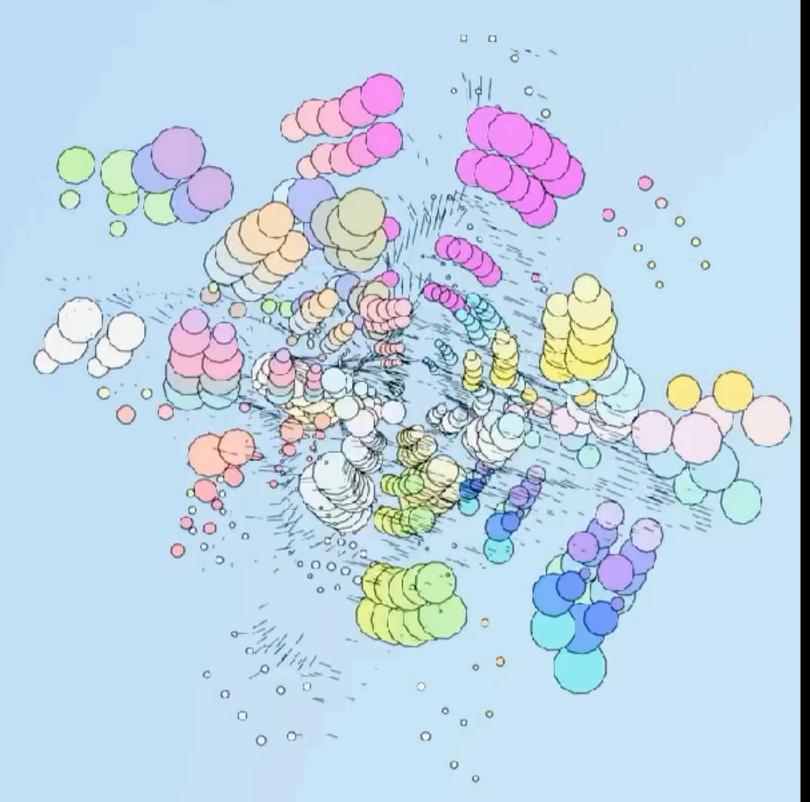
Fine-tuning BERT (2018) & GPT-2 (2019) becomes standard for adapting large models to specific tasks. Artists start fine-tuning StyleGAN and GPT models.

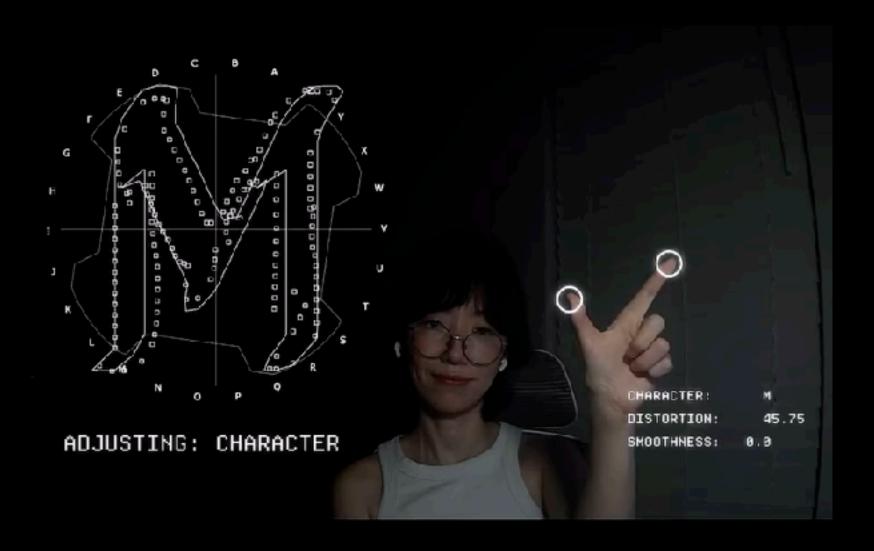
Classifier



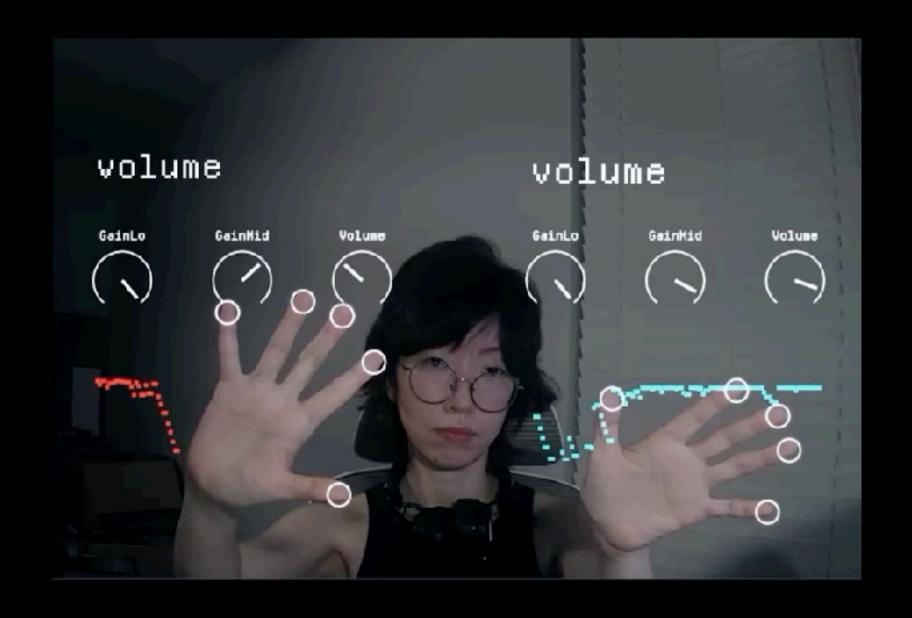
Poet Engineer

https://www.instagram.com/the.poet.engineer/





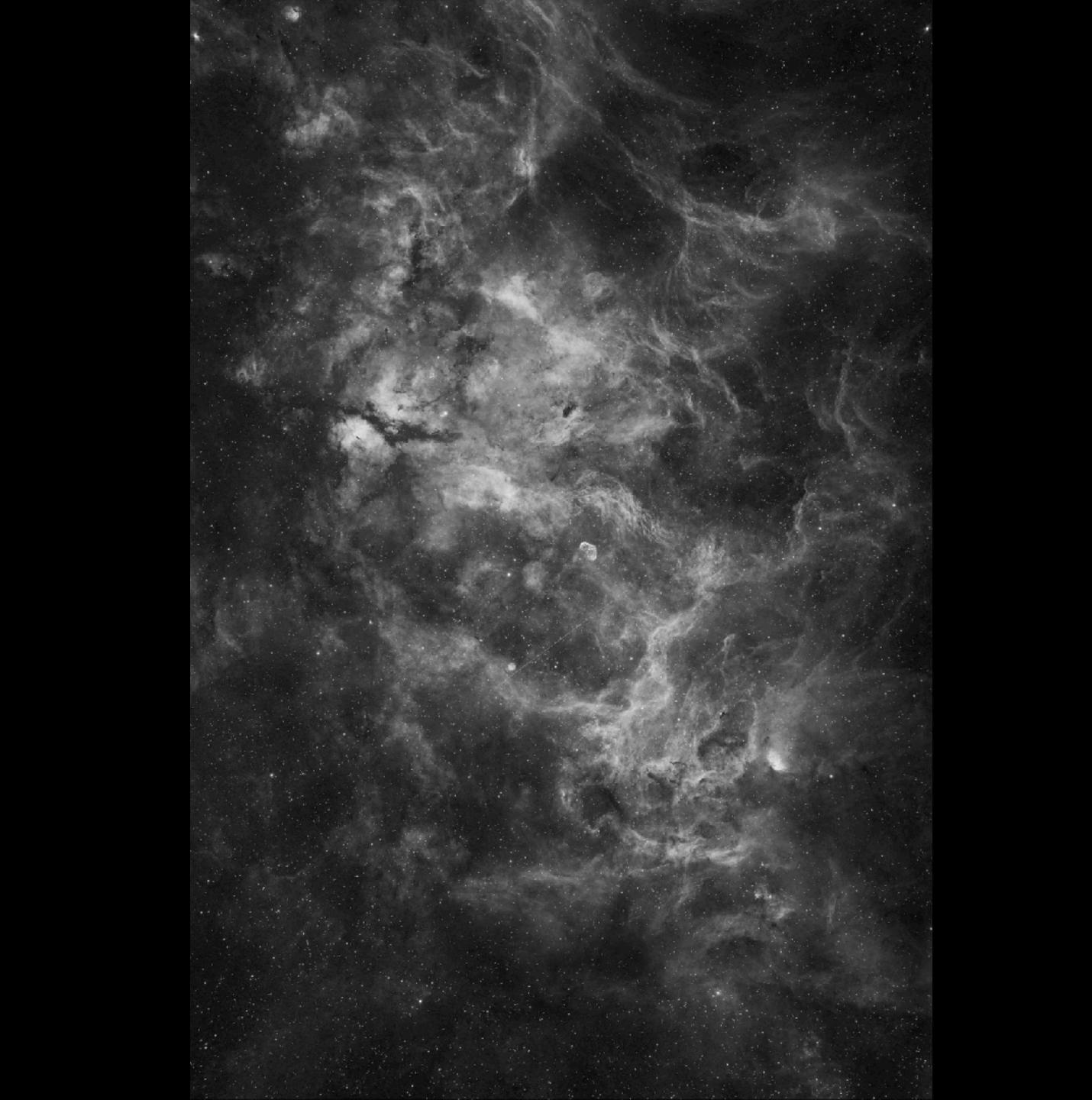
learning live dj mixing with gestures



UNIDS, Trevor Paglen

https://paglen.studio/2023/05/10/unids/

"... a project to photograph objects of unknown origin in orbit around the earth."



"The term "unid" is a term that amateur astronomers created to describe objects that they have observed in orbit, but whose identity they have failed to establish."

```
Unidentified - TO BE ASSIGNED
1 82891U
                 19274.97211782 +.000000236 +000000++40169-4 9992
2 82891 97.8262 340.4146 0014238 192.8285 167.2566 14.77392039103911
Unidentified - TO BE ASSIGNED
                 21305.97543406 -.000000116 +000000--78523-2 9997
1 82939U
2 82939 086.3573 310.0542 1886417 292.7704 048.5108 08.75629108323084
Unidentified - TO BE ASSIGNED
1 84006U
                 22230.06235828 -.000000089 +000000++000000+ 9997
2 84006 23.7246 50.0003 6131819 14.0642 357.3454 2.16231398 57994
Unidentified - TO BE ASSIGNED
1 84353U
                 22157.1200206+.000000353 +000000++000000+ 9990
2 84353 18.8985 279.1353 6683612 272.4086 18.7931 2.037266041915
Unidentified - TO BE ASSIGNED
1 85205U
                 22230.48154229 +.000000122 +000000++10863-3 9999
2 85205 82.9573 134.6974 0038197 79.5215 46.9552 13.76490932439570
Unidentified - TO BE ASSIGNED
1 85410U
                 20016.12638888 .00000006 00000- 00000+ 9996
2 8541 80.0053 91.4245 0009717 273.382201.61913.14633027
Unidentified - TO BE ASSIGNED
1 85412U
                 20016.34702987 .000000012 000000- 000000+ 9991
2 85412 88.910 82.4227 001013287.140204.57013.55759361
Unidentified - TO BE ASSIGNED
1 87730U
                 22234.79320754 +.000000069 +000000++56451-4 9994
2 8773 82.9432 47.6587 0031023 128.3305 232.0646 13.74210671419417
Unidentified - TO BE ASSIGNED
1 87934U
                 22234.40224825 +.000000053 +000000++40448-4 9992
2 87934 82.9356 112.5085 0031253 152.3913 24.1539 13.72830243438503
Unidentified - TO BE ASSIGNED
1 89177U 22231.34219058 +.000000062 +000000++50806-4 9994
2 89177 82.9179 87.0619 0031057 272.6767 87.0834 13.73436645896661
```

Orbital Elements for Unknown Objects (Paglen Studio)

ImageNet Roulette

https://paglen.studio/2020/04/29/imagenet-roulette/

Not logged in. Login | Signup

14,197,122 images, 21841 synsets indexed

the "person" categories from a dataset called ImageNet (developed at Princeton and Stanford Universities in 2009), one of the most widely used training sets in machine

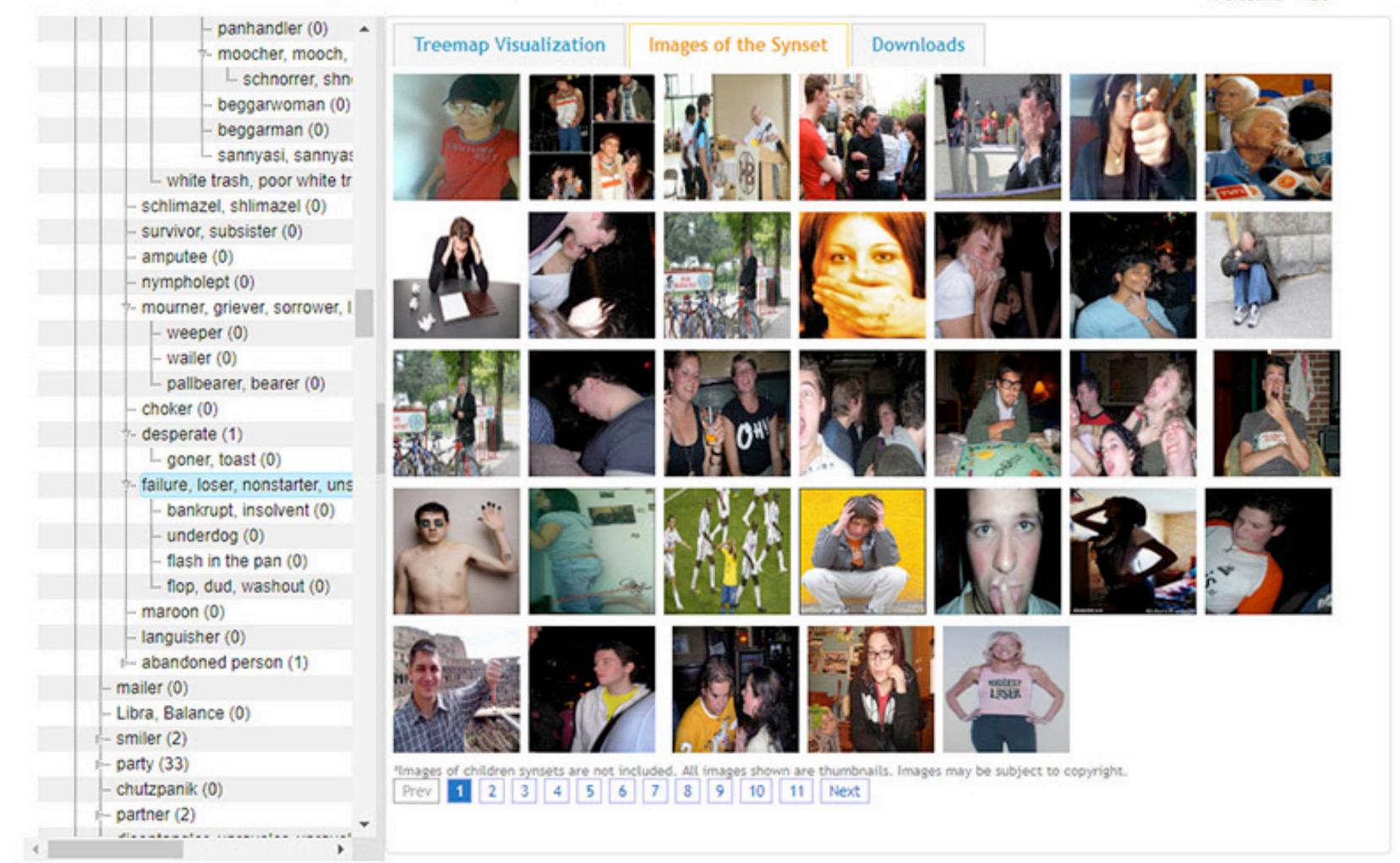
learning research and

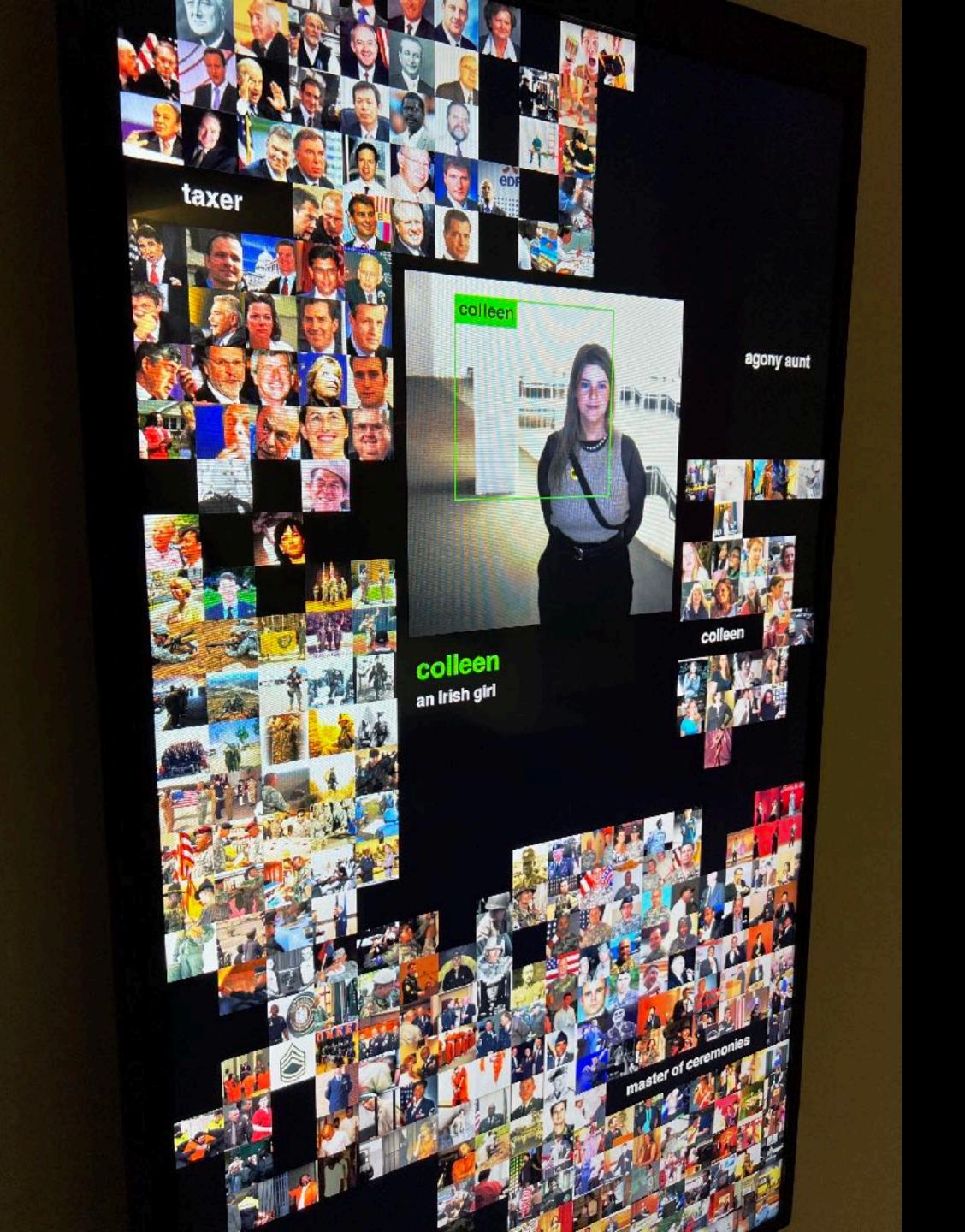
development.

ImageNet Roulette is trained on

Failure, loser, nonstarter, unsuccessful person

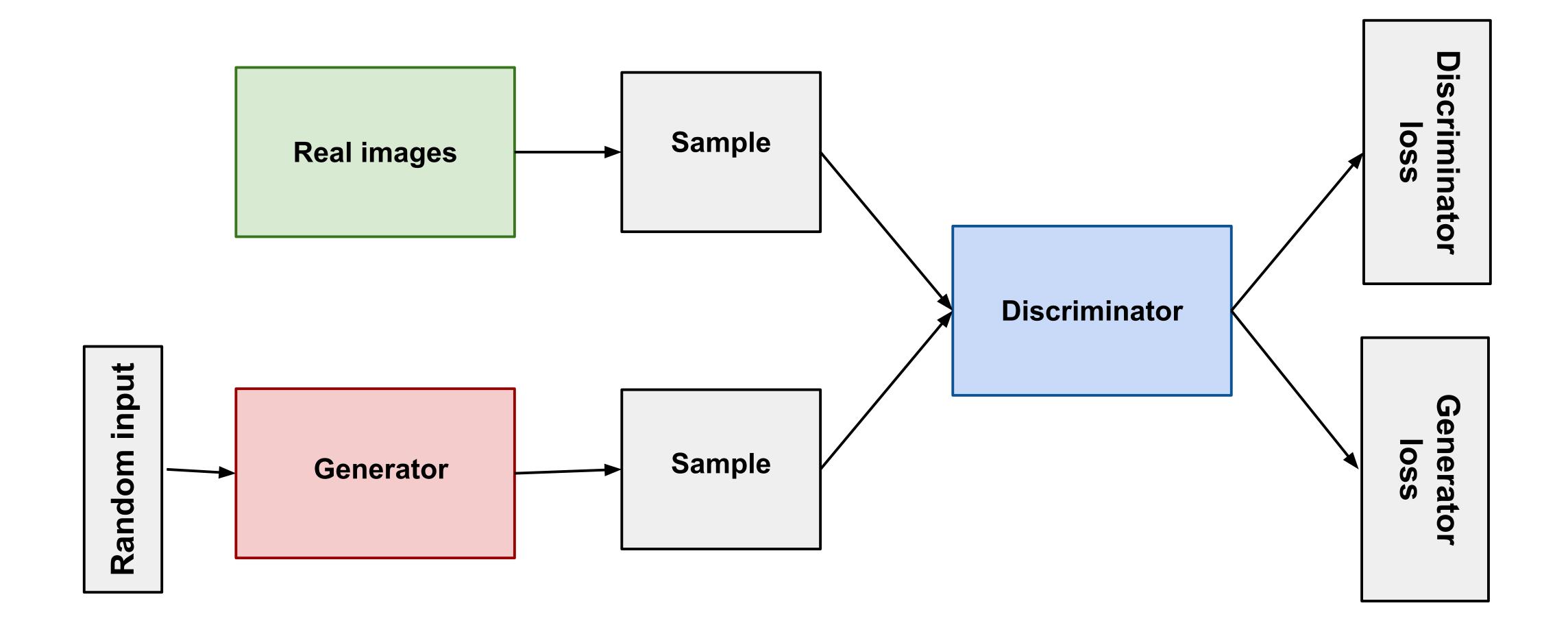
A person with a record of failing; someone who loses consistently



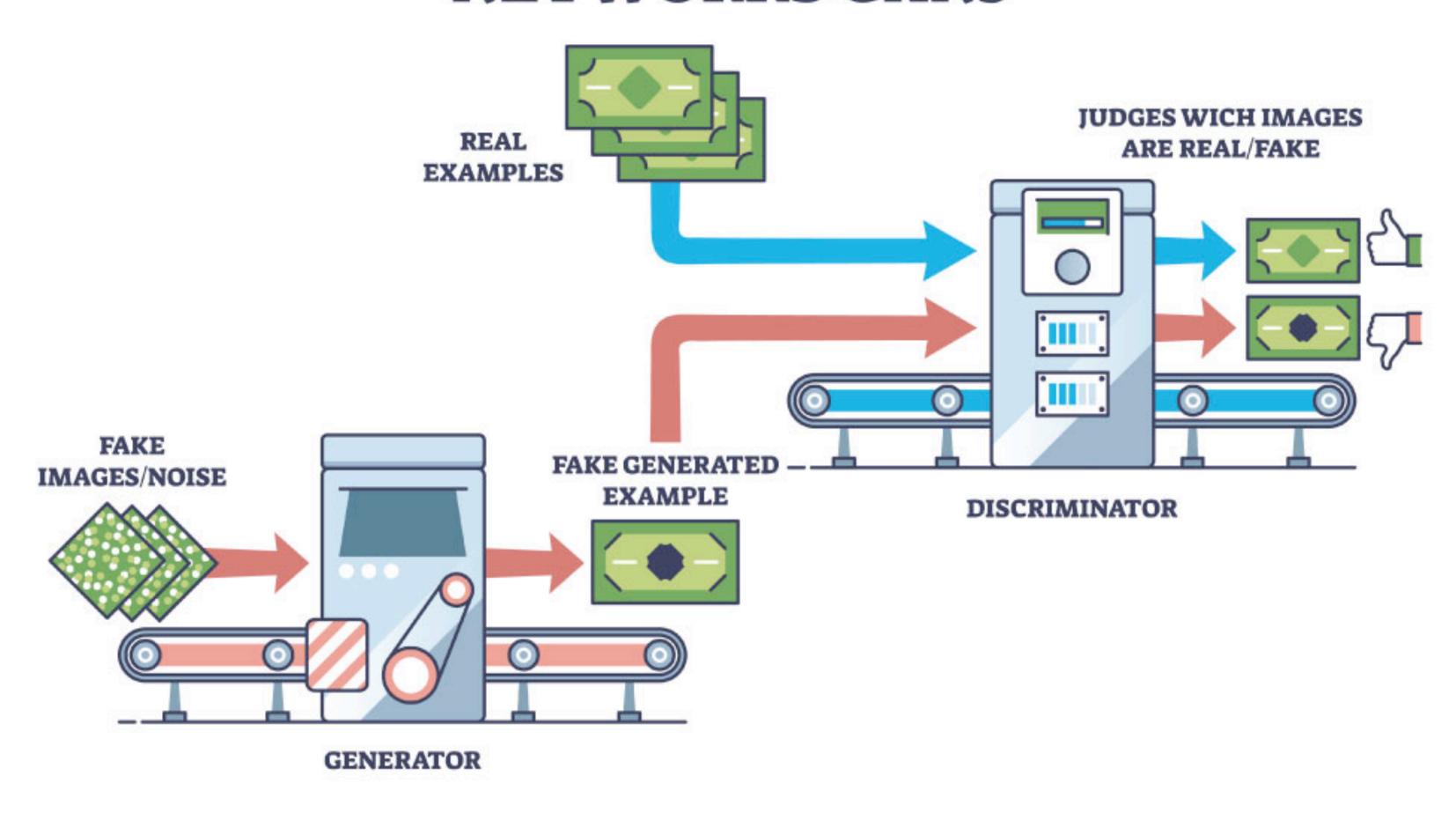


The project was a provocation, acting as a window into some of the racist, misogynistic, cruel, and simply absurd categorizations embedded within ImageNet and other training sets that Al models are build upon.

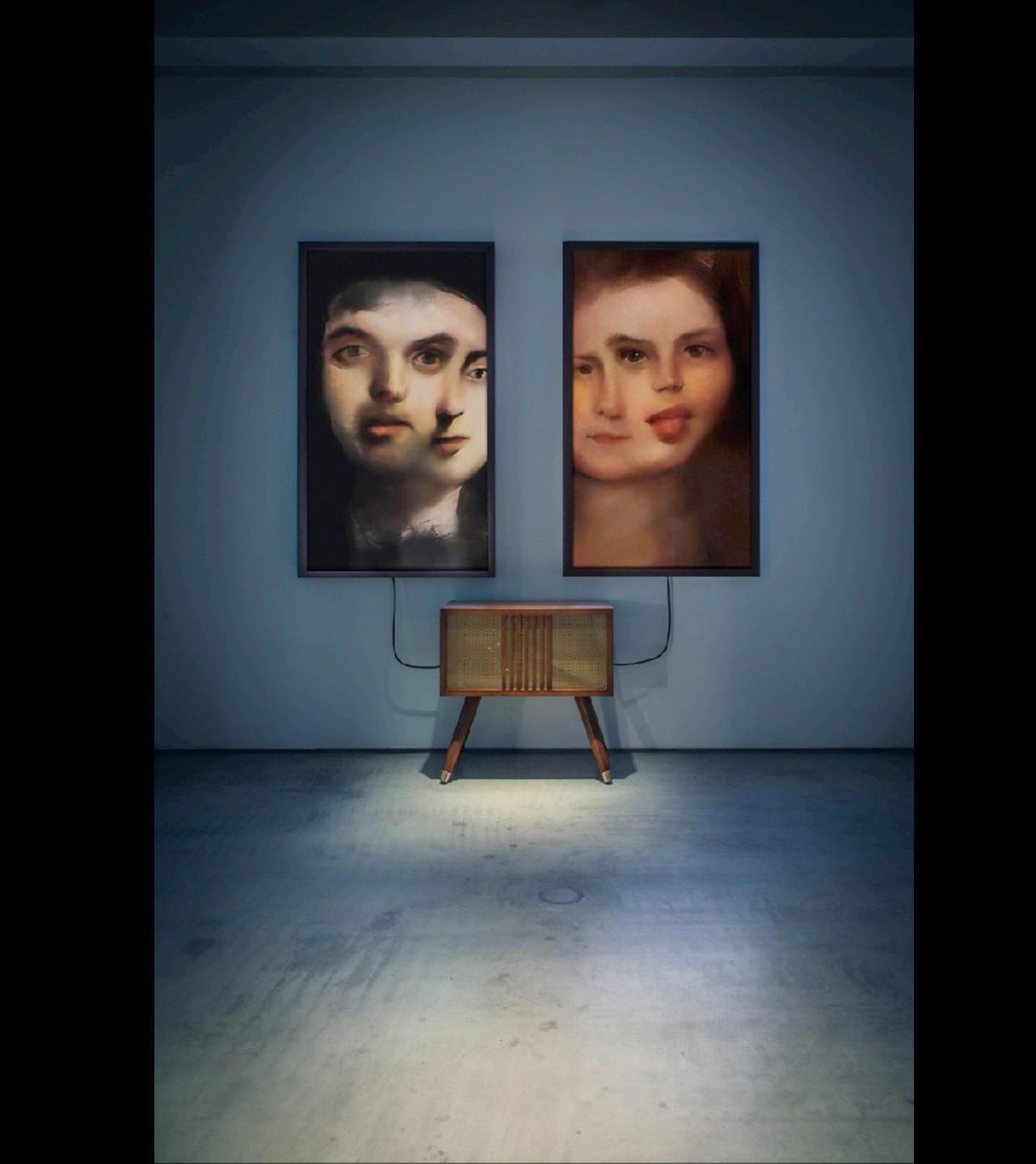
FastGAN



GENERATIVE ADVERSARIAL NETWORKS GANS



Memories of Passersby I, Mario Klingemann GAN



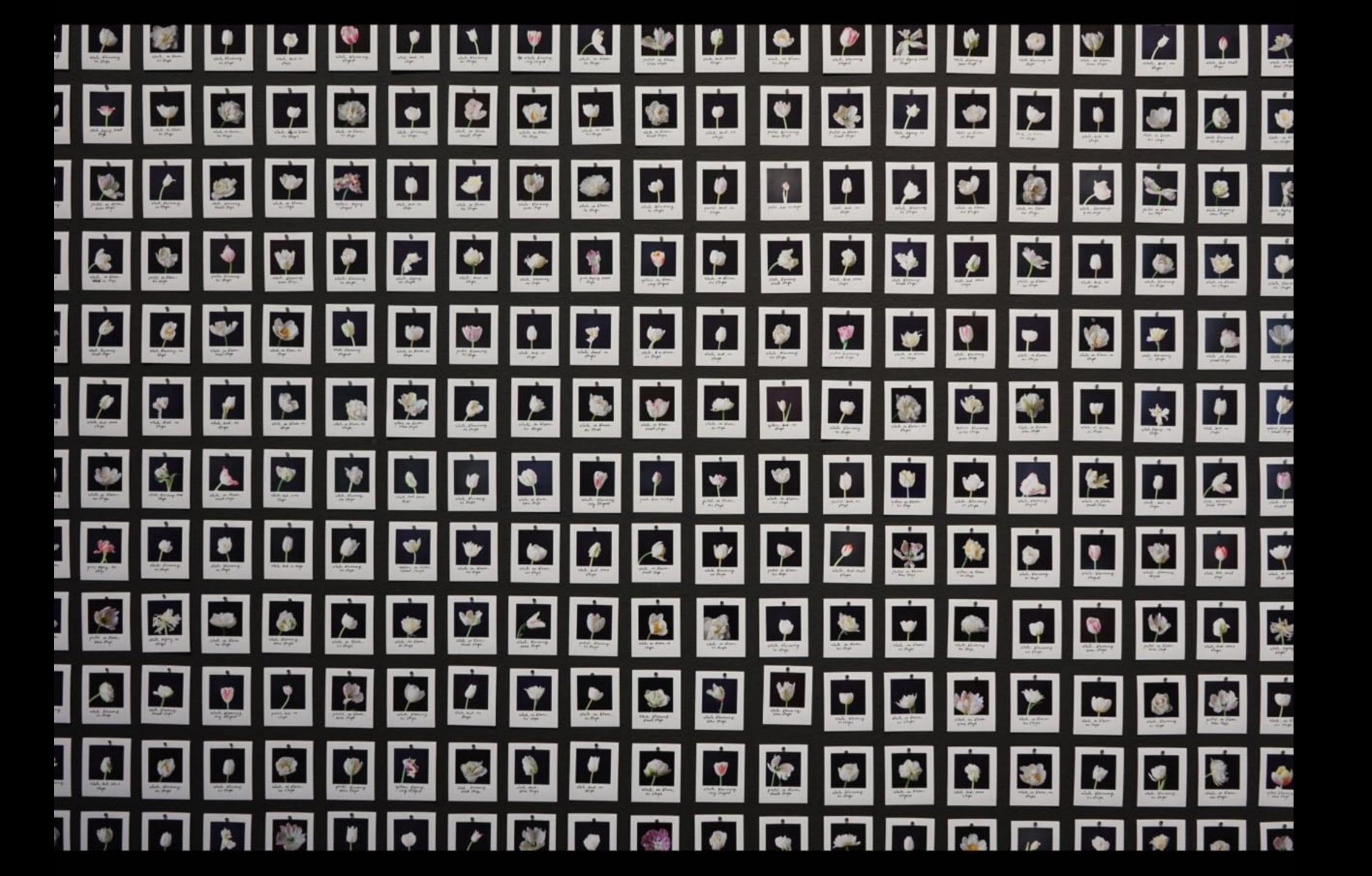
Memories of Passersby I Mario Klingemann

The Shell Record, Anna Ridler GAN

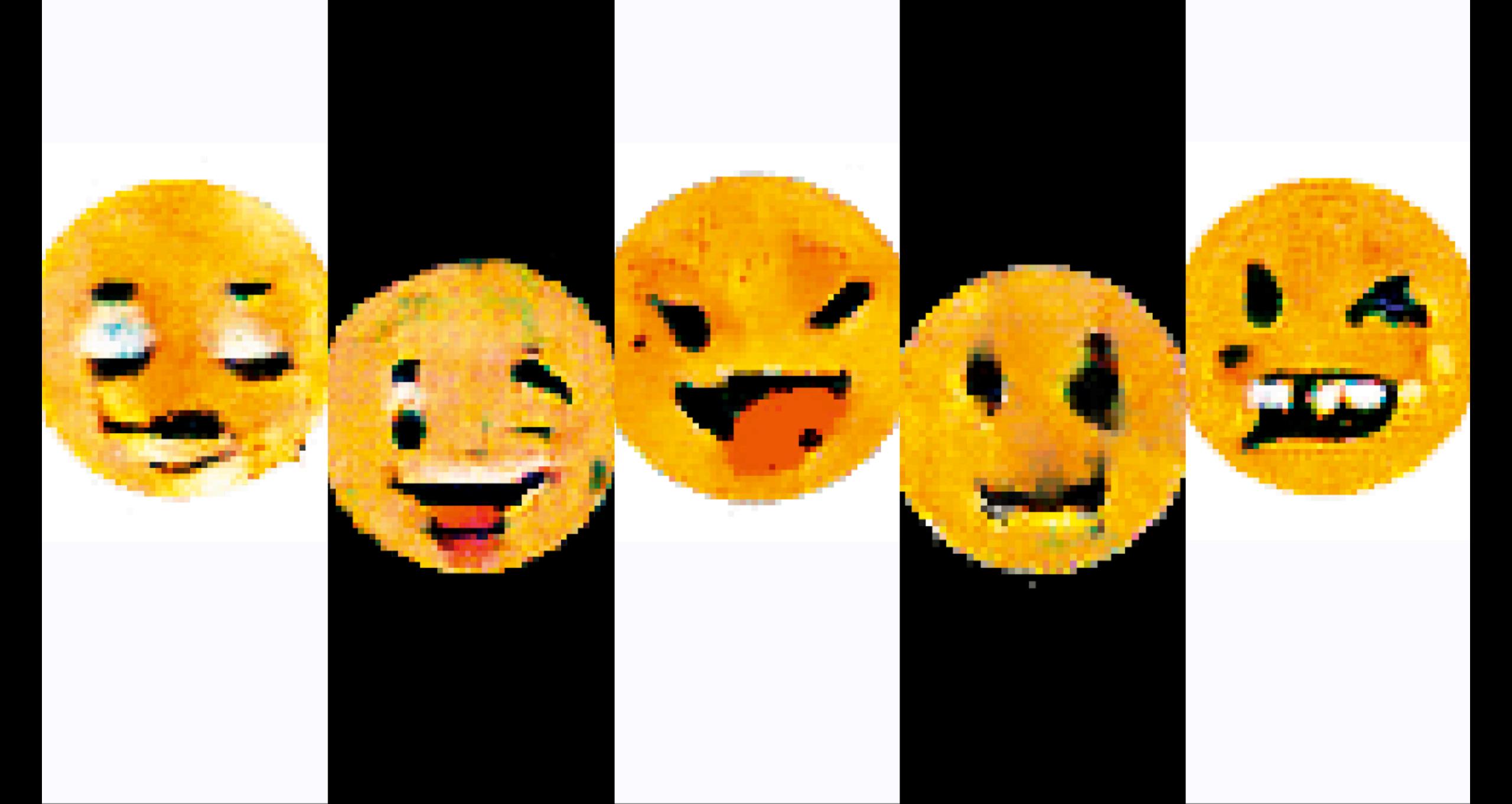
Mosaic Virus, Anna Ridler GAN

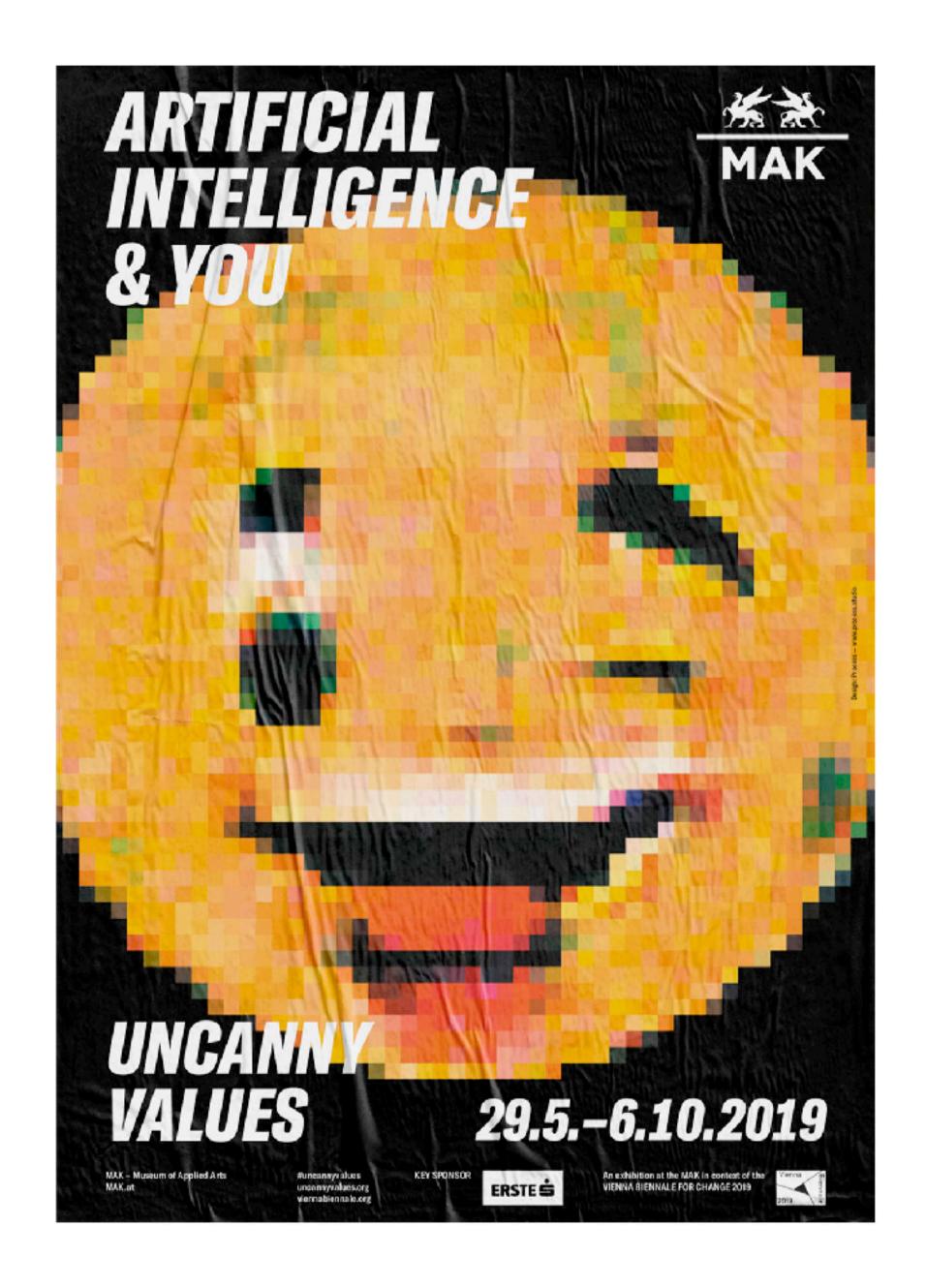






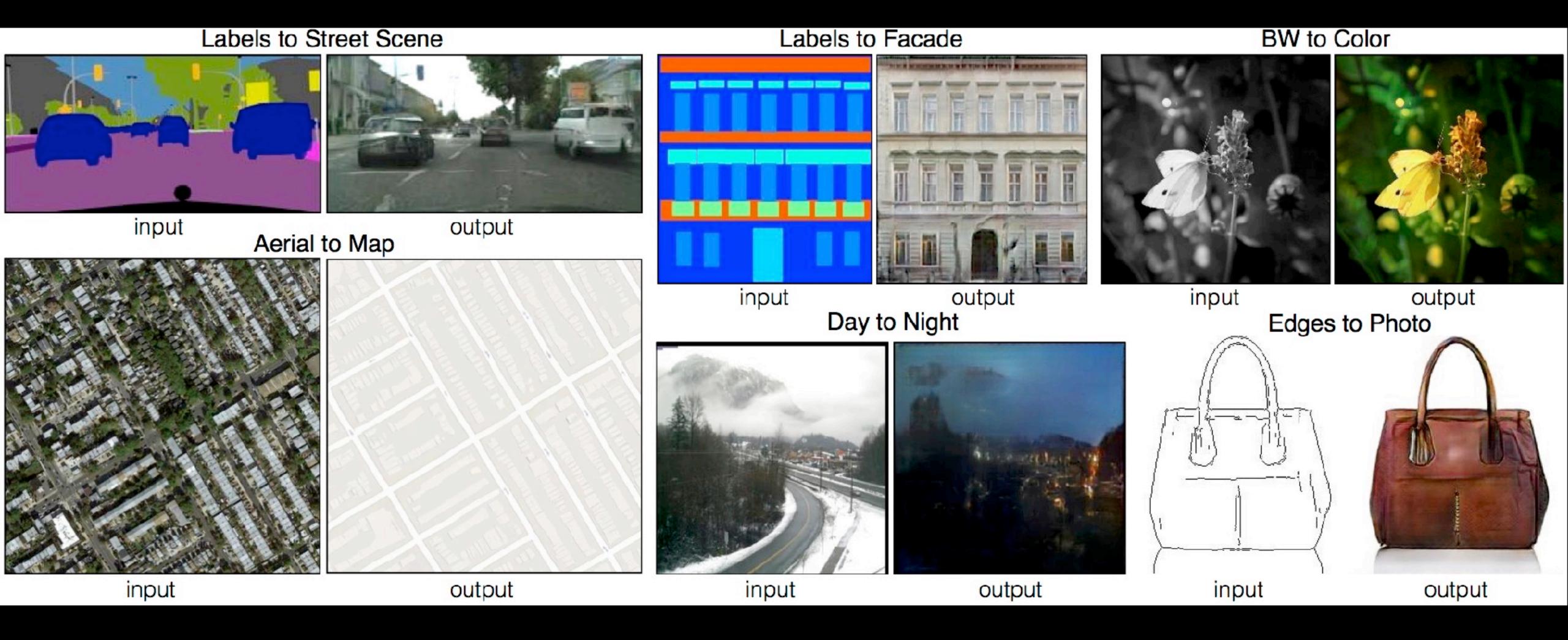
Almoji, Process Studio GAN

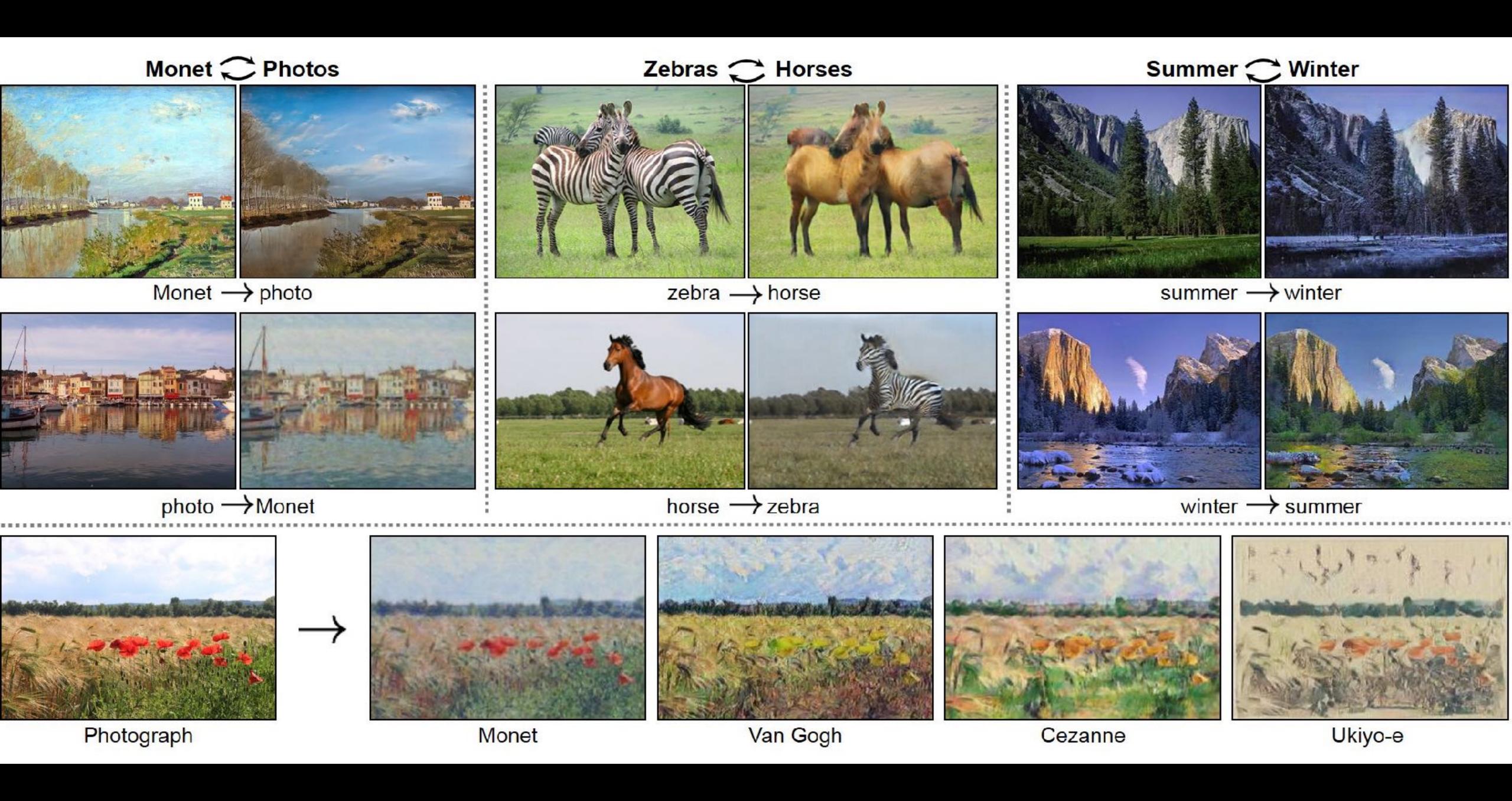




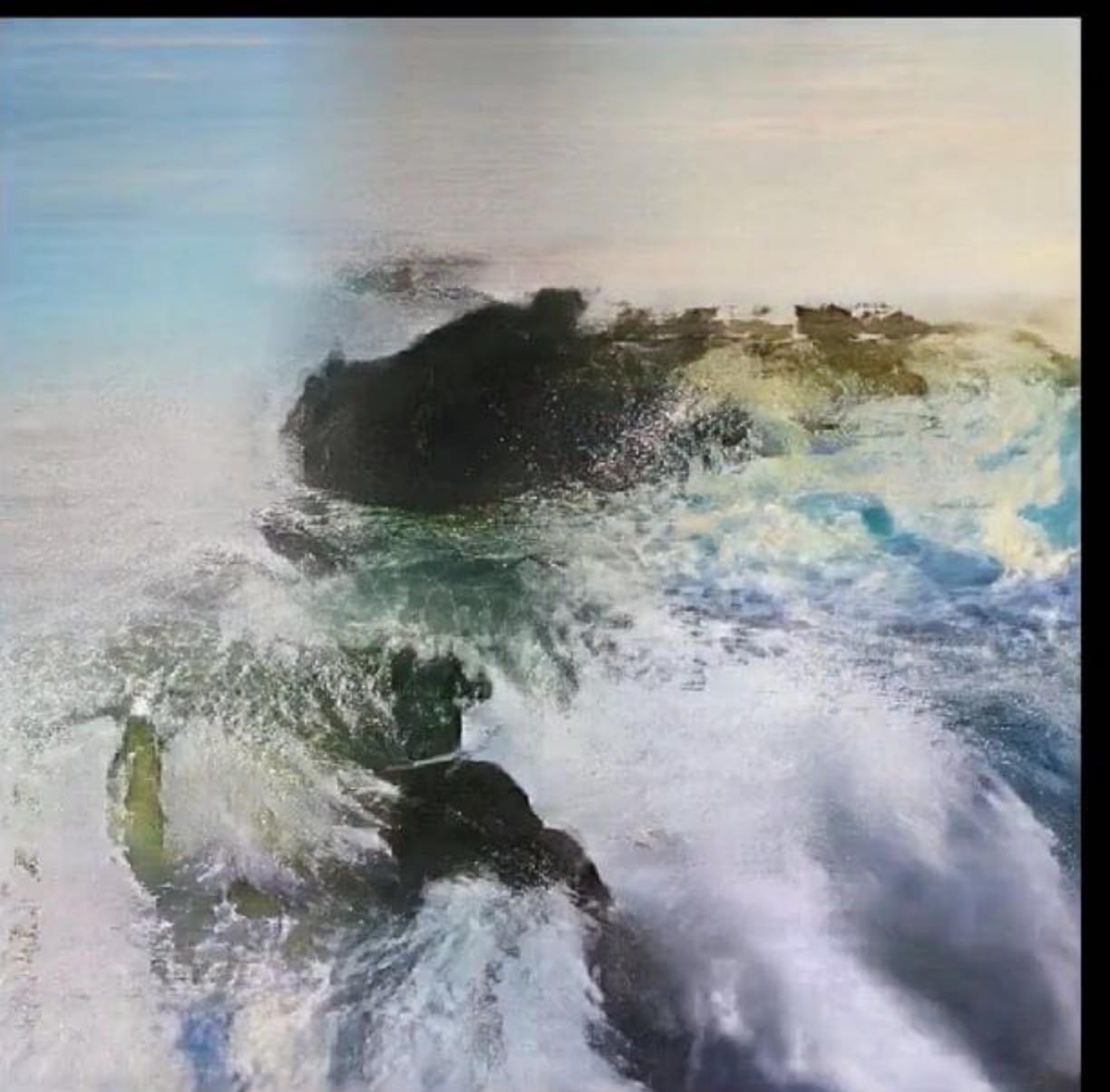
Pix2Pix

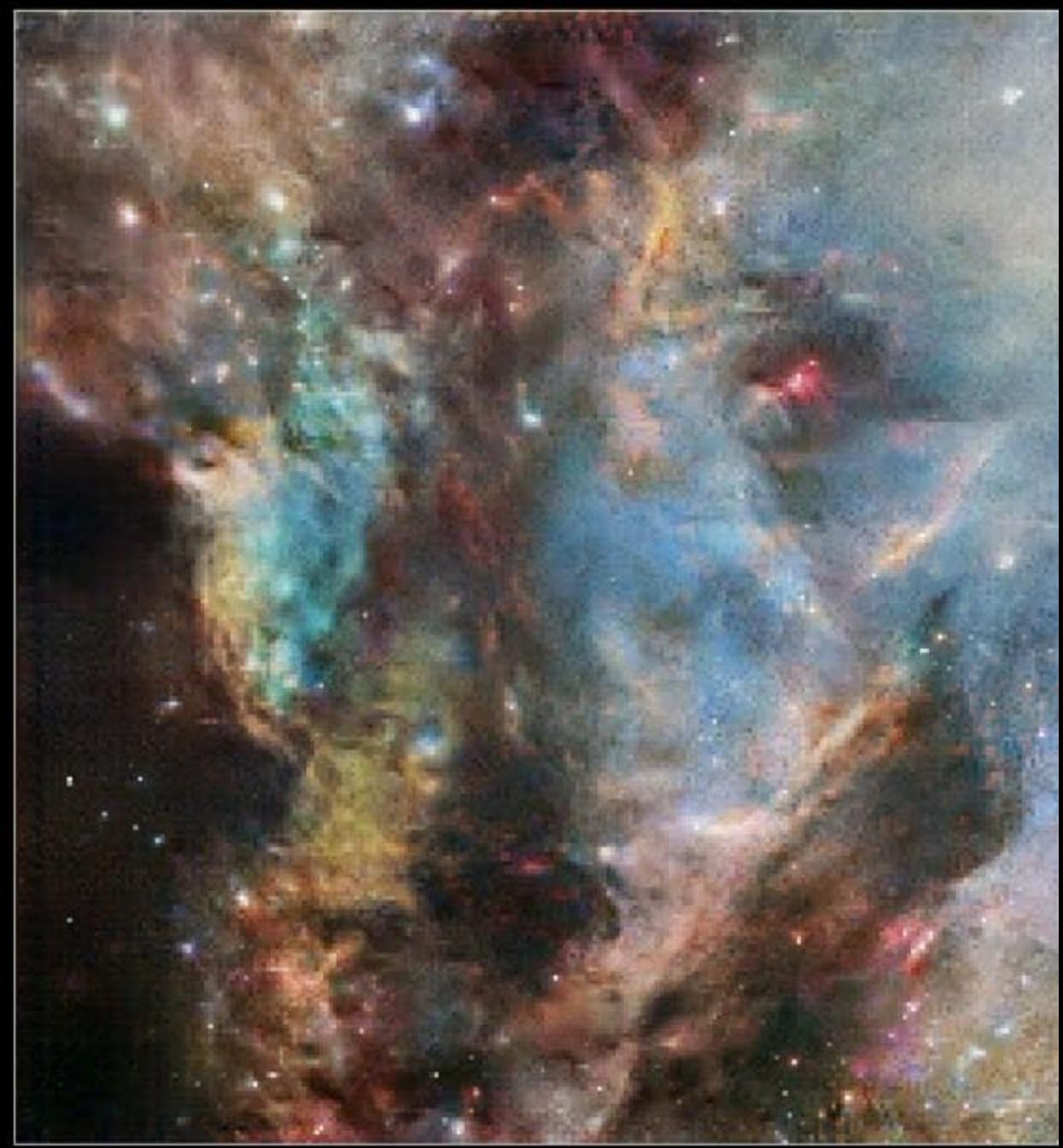
Image-to-Image Translation





Memo Akten's "Learning to see" pix2pix





Anna Ridler's "Fall of the House of Usher" pix2pix

THEFALL

OFIHE

HOUSE OF USHER

A Film Version of Poe's Story

By MELVILLE WEBBER

"To make my animation I made a training set of set of 200 drawings using the 1929 version of the Fall of the House of Usher as my base so that the GAN would essentially learn how to draw in my style."

Anna Ridler, Fall of the House of Usher,

https://www.vam.ac.uk/blog/museum-life/guest-blog-post-fall-of-the-house-of-usher-datasets-and-decay

"The errors and choices that are made when drawing are amplified and the GAN holds a mirror up to my own drawing and makes me realise things that I was not aware of: what I find the most important, what I always edit out."

Anna Ridler, Fall of the House of Usher,

https://www.vam.ac.uk/blog/museum-life/guest-blog-post-fall-of-the-house-of-usher-datasets-and-decay

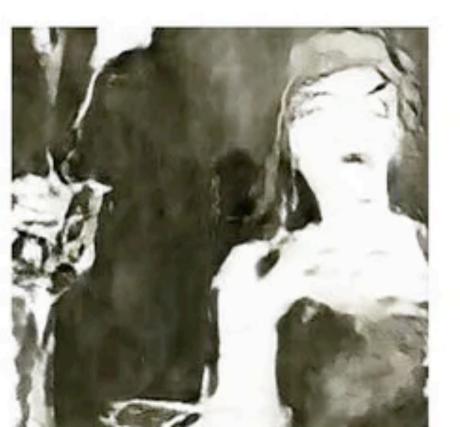
"The GAN copies me, learning the humanness and mistakes that come as part of this process."

Anna Ridler, Fall of the House of Usher,

https://www.vam.ac.uk/blog/museum-life/guest-blog-post-fall-of-the-house-of-usher-datasets-and-decay

1. Still from 1929 film

- 2. Drawing of film
- 3. GAN generated image
- 4. Drawing of GAN generated image



"Producing an image using a GAN versus any other way gives the viewer a different experience, expectation, history, traces and contexts to consider. What are these associations and how might they be used in a piece of work? [...] Can a GAN or indeed training set become a "wilful actor and agent within artistic processes" [5] as other materials are?"

https://annaridler.com/gans-in-art

Alternative Face, Mario Klingemann pix2pix

The piece employs a generative adversarial network (GAN), specifically the pix2pix model, which pairs two neural networks—one generating images, the other refining them through critique. I trained this model on thousands of facial markers derived from music video clips of French singer Françoise Hardy, chosen for her expressive features. In the resulting video, Conway's face morphs into Hardy's, her "alternative facts" audio driving the illusion.

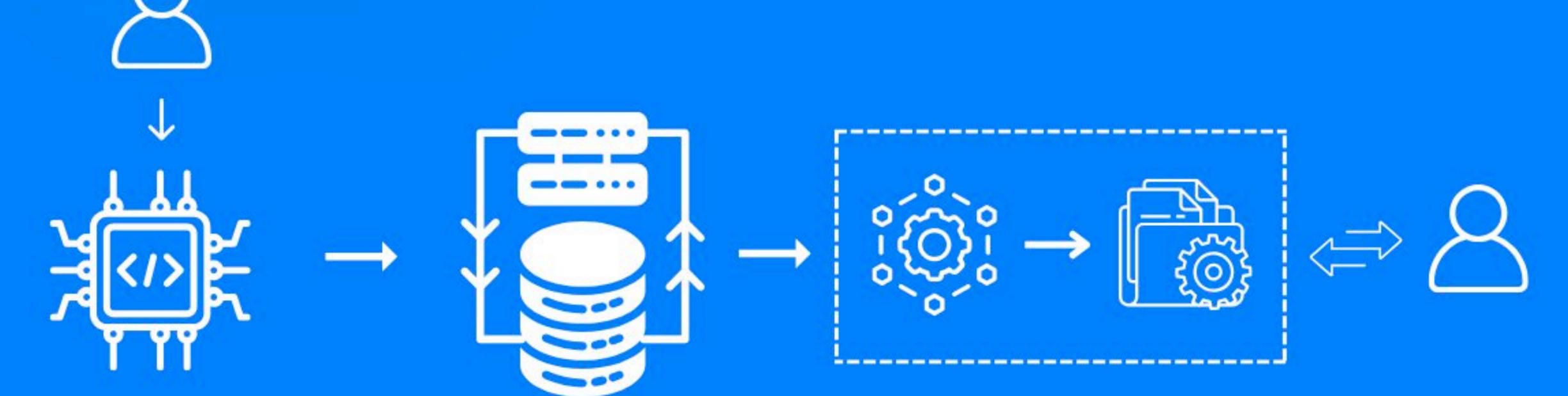
https://quasimondo.com/2017/02/04/alternative-face/

Fine-Tuning

Fine-tuning is the process of adapting a pre-trained model to a specific task using a smaller, specialized dataset.

Fine-tuning process

User sends query

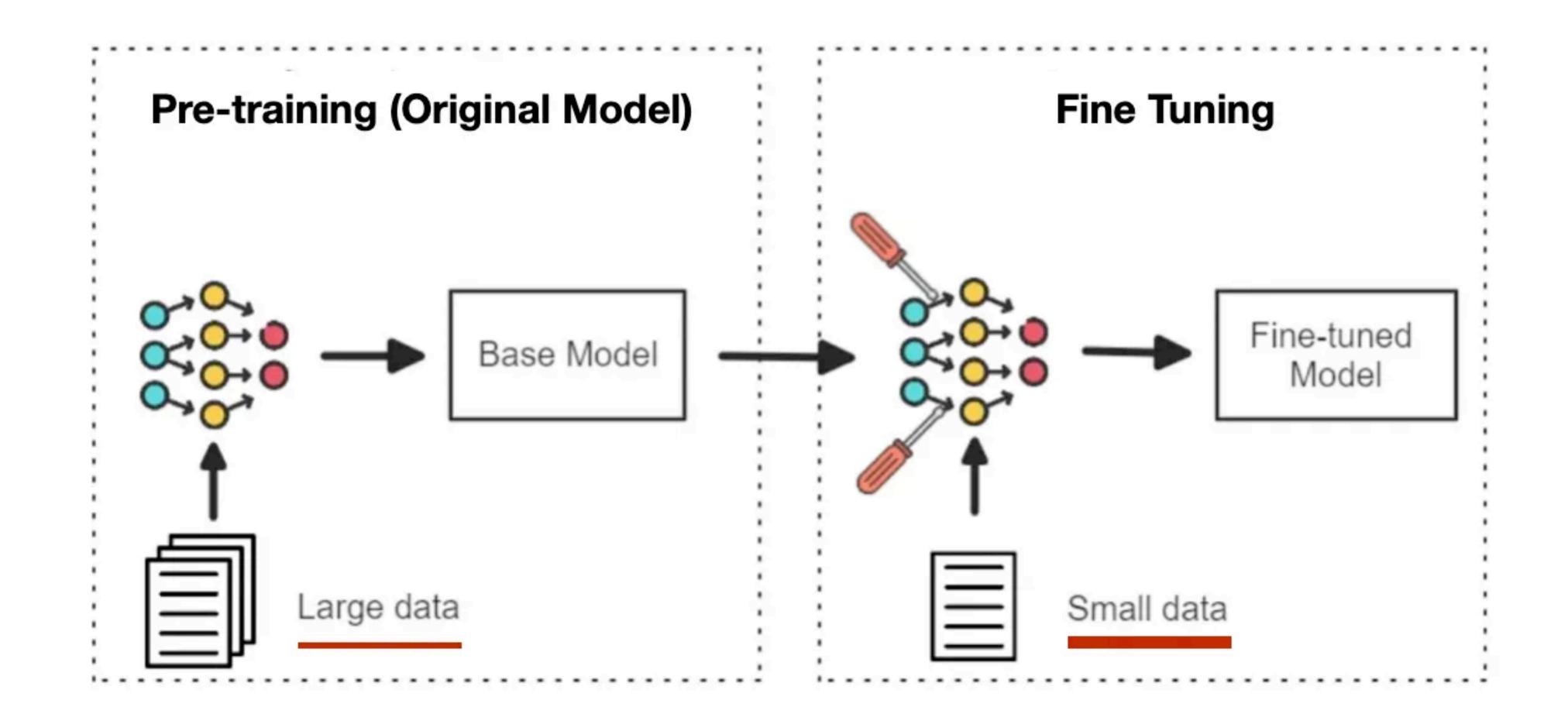


Pre-trained LLM

Specific dataset collection

Fine-tuned LLM with updated weights

Generates a final response to the user



Fine-tuning allows developers to adapt a model to specialized domains such as legal, medical, or customer support applications.

Cost-Effectiveness

GPT-3.5 4.600.000\$ - 15.000.000\$

ChatGPT-3 2.000.000\$ - 4.000.000\$

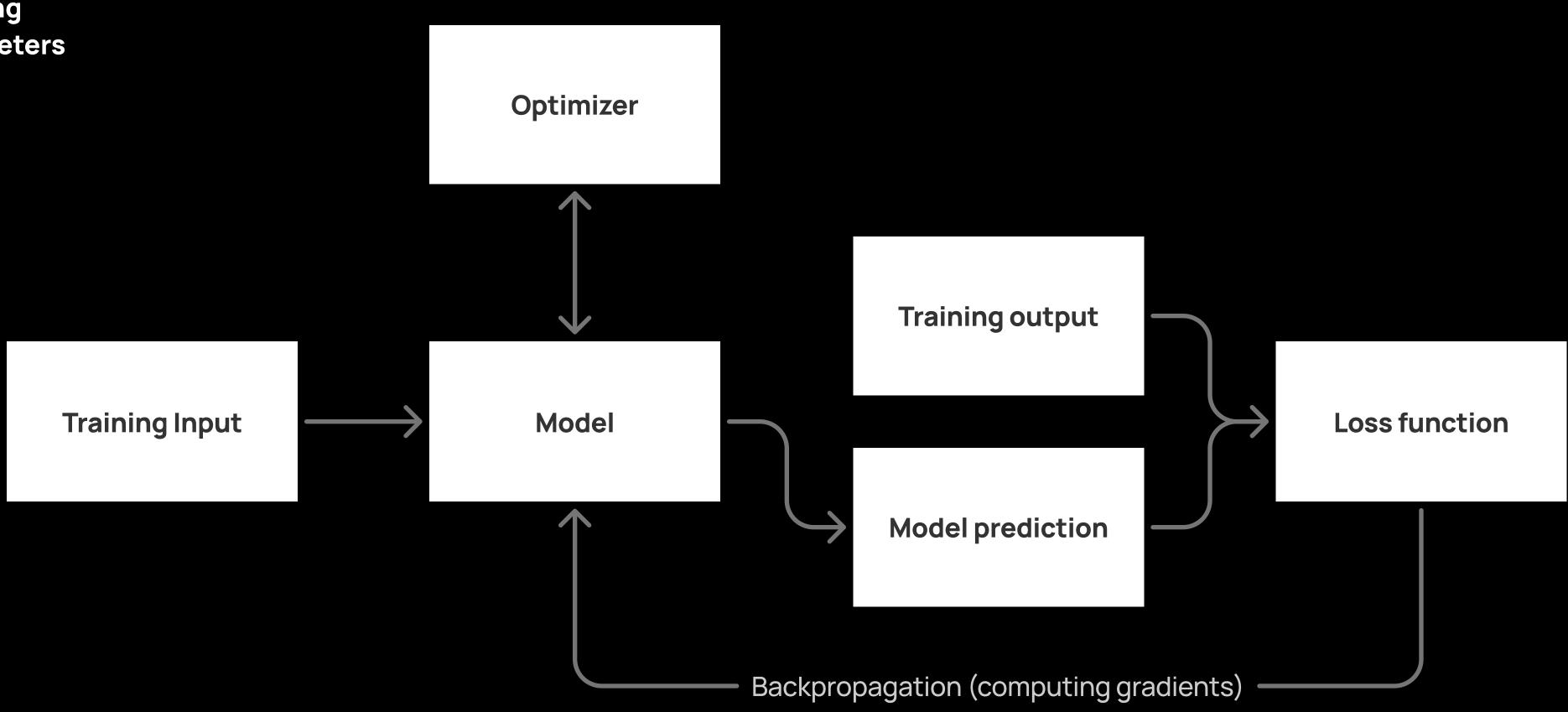
Cost-Effectiveness

Stable Diffusion 1.5 600.000\$

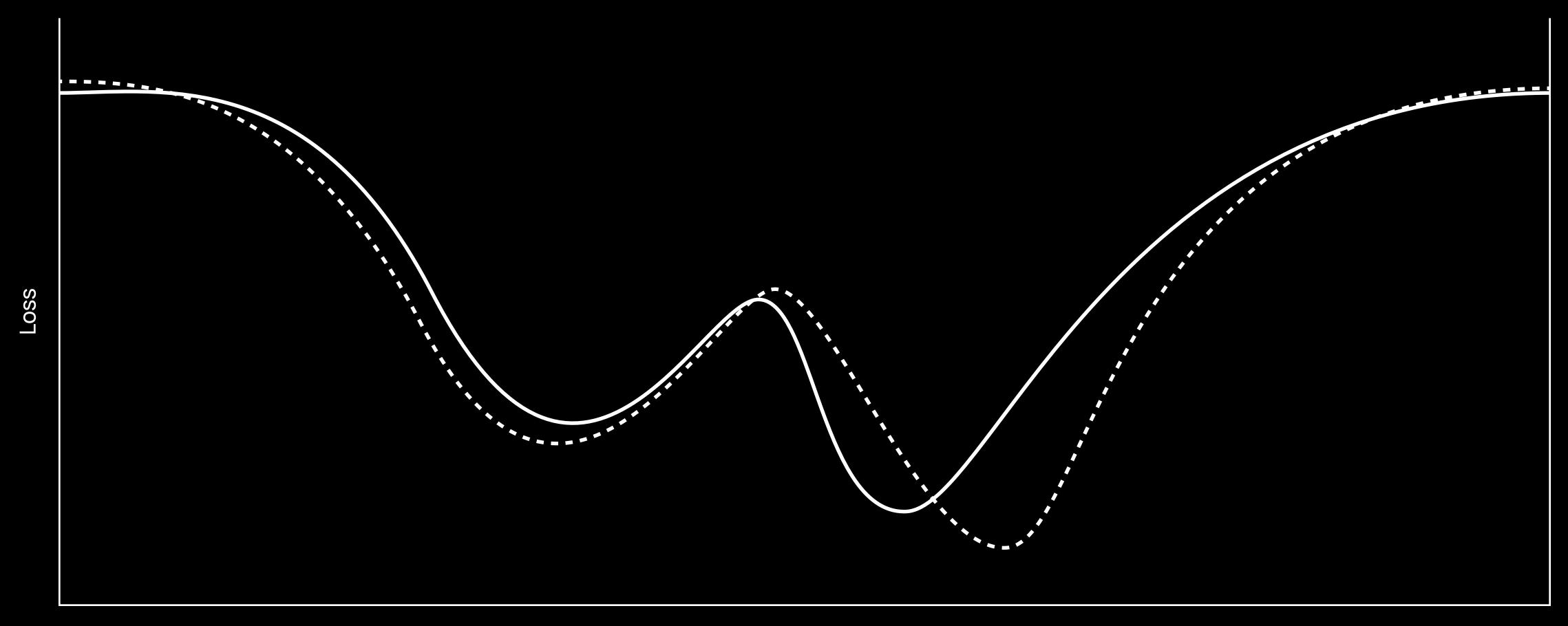
Fine-tuning 0.5\$ - 10\$ (~1.000-25.000€ when including pc hardware for training at home)

There is a 1-pixel wide line at the start

Fine-Tuning has the exact same steps as pre-training. The only differences are in the training data and the training parameters (the "hyperparameters").

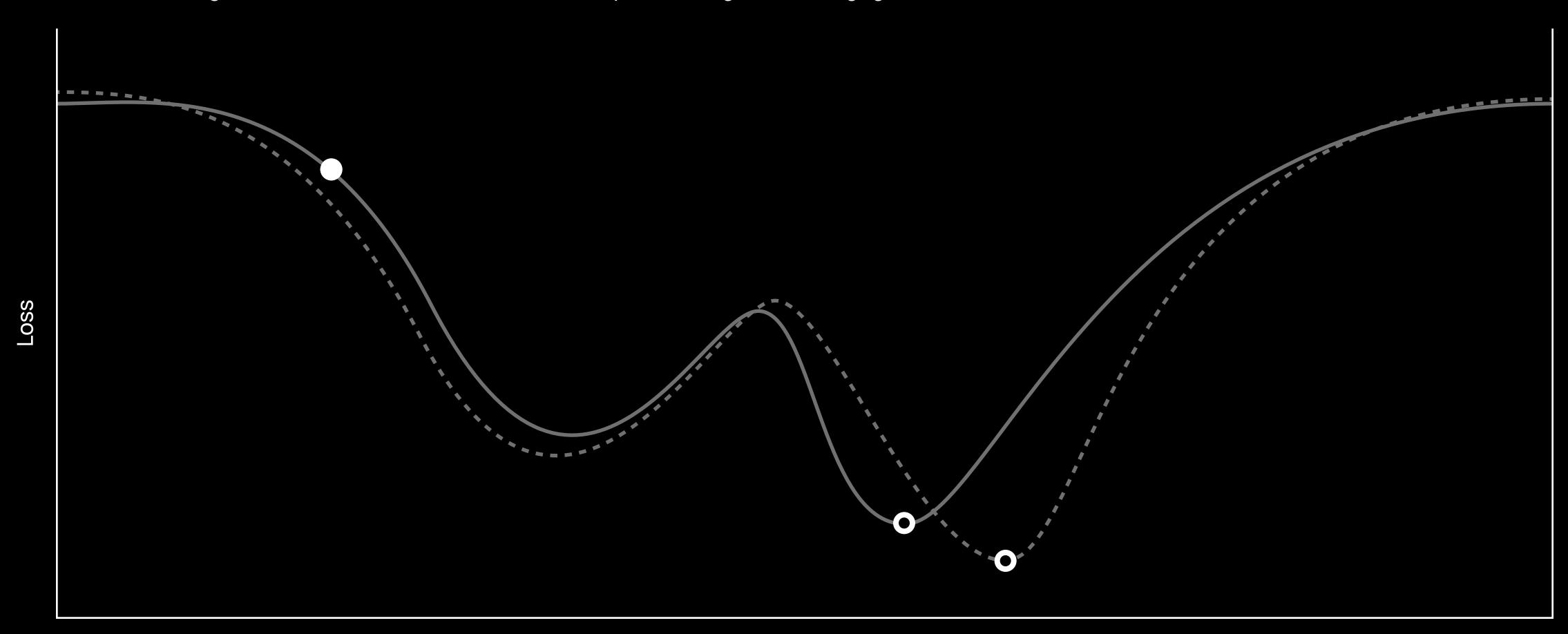


Pre-Training LossFine-Tuning Loss



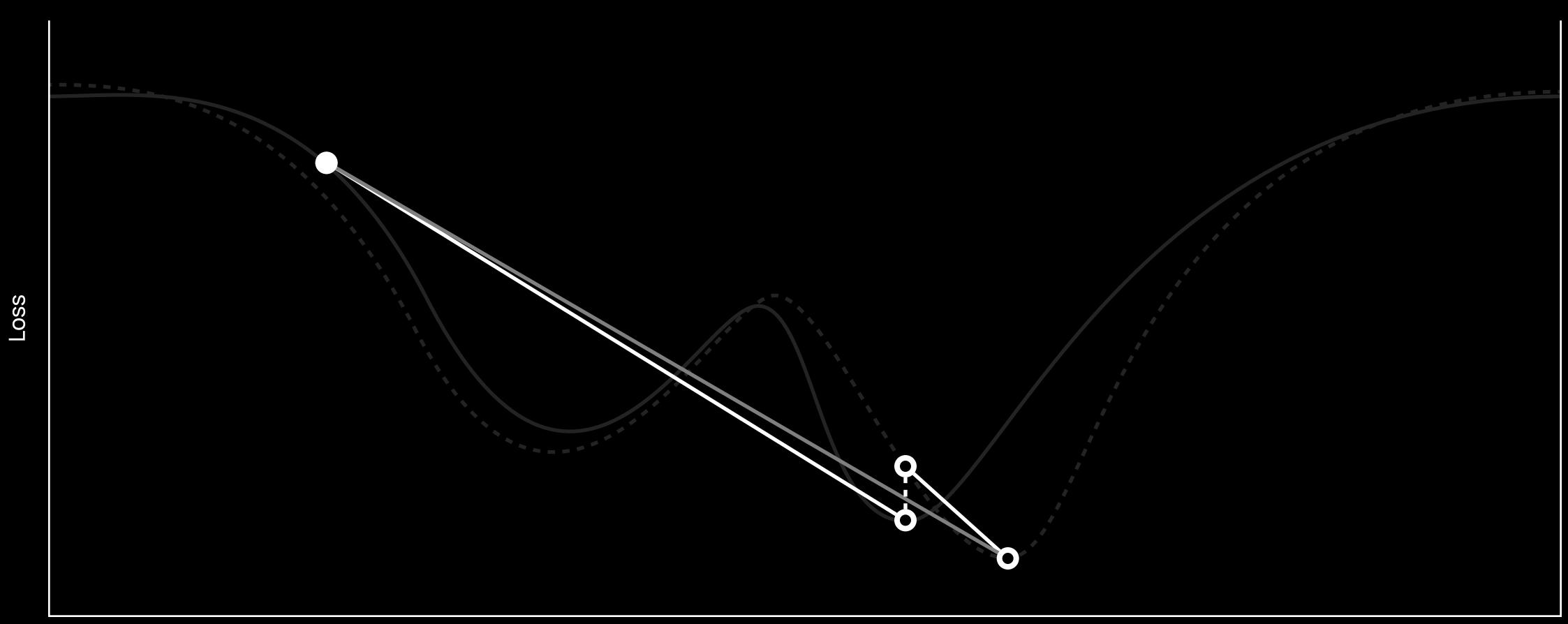
Pre-Training LossFine-Tuning Loss

- Initial model configuration
- Global minimum pre-training/fine-tuning (goal)



Pre-Training Loss Initial model configuration ---- Fine-Tuning Loss

Global minimum pre-training/fine-tuning (goal)



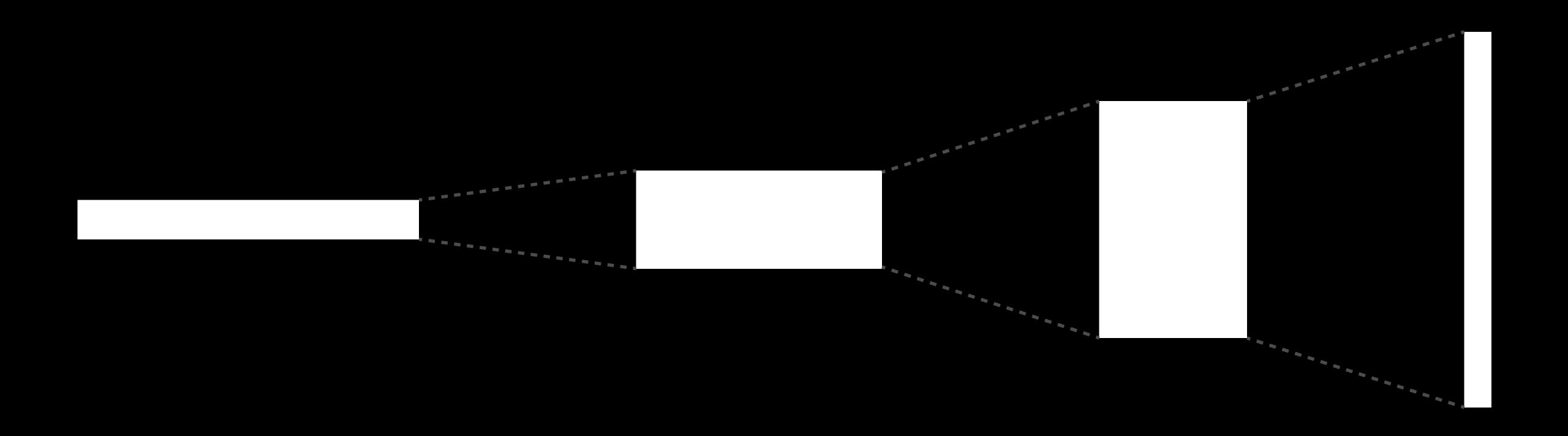
Forms of Fine-Tuning

01 Full fine-tuning

02 Partial fine-tuning

03 Adapter-based fine-tuning

Similarly to pre-training, all layers of a model change during fine-tuning. Full fine-tunes usually yield the best results, but are computationally expensive and prone to overfitting.



Forms of Fine-Tuning

01 Full fine-tuning02 Partial fine-tuning03 Adapter-based fine-tuning

Certain layers of a model get 'frozen'. That means no gradient calculations during backpropagation and no adjustments to these layers by the optimizer are being made. Usually the first layers get frozen since they deal with lower level features.

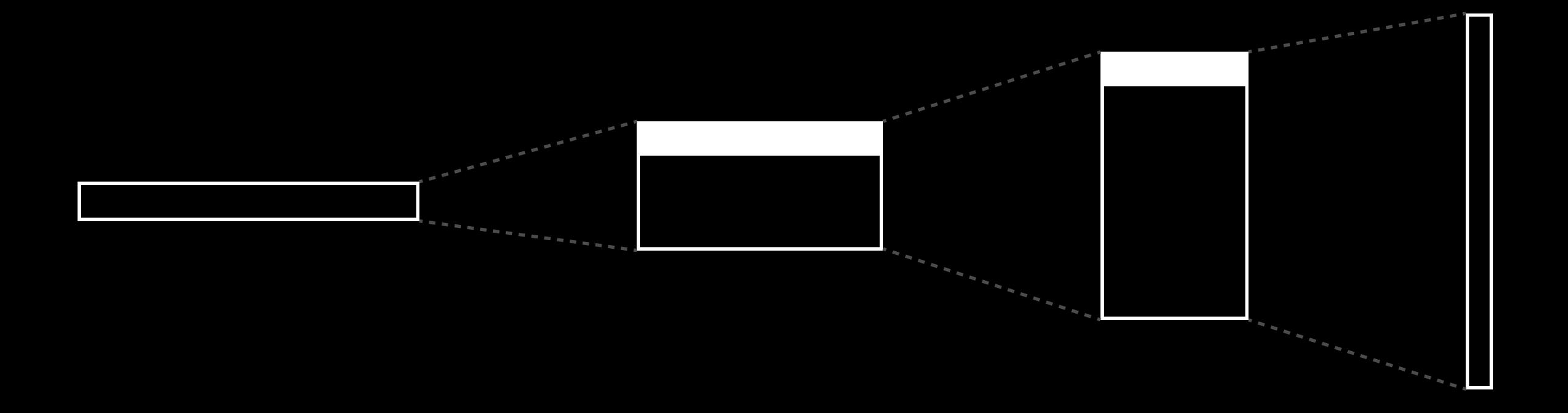


Forms of Fine-Tuning

01 Full fine-tuning 02 Partial fine-tuning

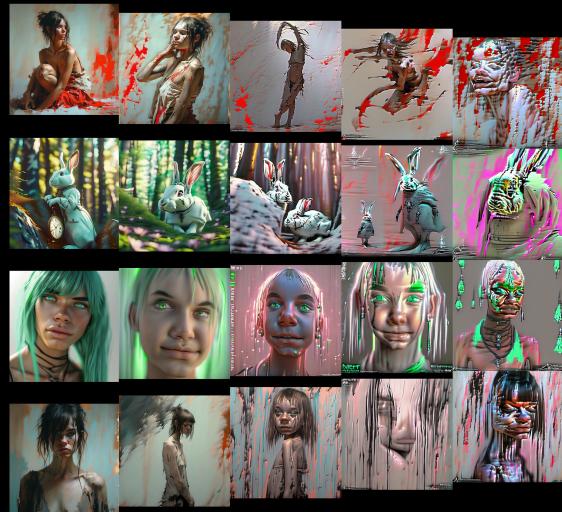
03 Adapter-based fine-tuning

Adapter-based methods don't change the model in any way. Instead they train separate smaller layers / matrices that get 'added' to the existing layers. That way they save on resources and output really small models that can be easily loaded and swapped out during inference.



Habsburg Al Portrait Studies, Martin Disley

Habsburg Al Portrait Studies is a series of clothprinted generative portrait images produced using a bespoke diffusion model recursively retrained on its own output. This autophagous training causes the model to collapse on itself, constricting the model's distribution around the mean, forcing it to produce images in an amplified version of the model's default style.



https://www.creativeapplications.net/member/habsburg-ai-portrait-studies/

GPT-2 Generated Ceramic Recipes, Derek Au

Fine-Tuning

Crawly Elsie's Matte-04

- 38.0000 EP Kaolin
- 28.0000 Gerstley Borate
- 19.0000 G-200 Feldspar
- 9.0000 Lepidolite
- 6.0000 Soda Ash
- 4.0000 Wollastonite

Ame-Sosa-Wenkel

- 38.0000 Nepheline Syenite
- 29.0000 Silica
- 12.0000 Colemanite
- 8.0000 Whiting
- 6.0000 Dolomite
- 5.0000 Barium Carbonate
- 2.0000 Bentonite
- 1.0000 Rutile
- 0.7500 Copper Carbonate

Amber Celadon

- 34.0000 Albany slip
- 20.0000 Custer Feldspar
- 13.0000 Silica
- 13.0000 Wollastonite
- 6.0000 Whiting
- 3.0000 EP Kaolin
- 3.0000 Gerstley Borate
- 3.0000 Rutile
- 2.0000 Red Iron Oxide

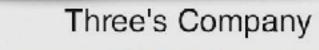
Craters

- 30.0000 Lithium Carbonate
- 30.0000 Silica
- 15.0000 Borax
- 10.0000 Zircopax
- 10.0000 Kaolin
- 5.0000 Bentonite
- 3.0000 Copper Carbonate

Glazy This Glaze Did Not Exist.

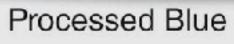
OpenAI

OpenAl GPT-2 generated glaze recipes. Orton cone 6, oxidation.



Oakland blue

Yellow Textured



Sandy Red Plum

Rising Sun Chang

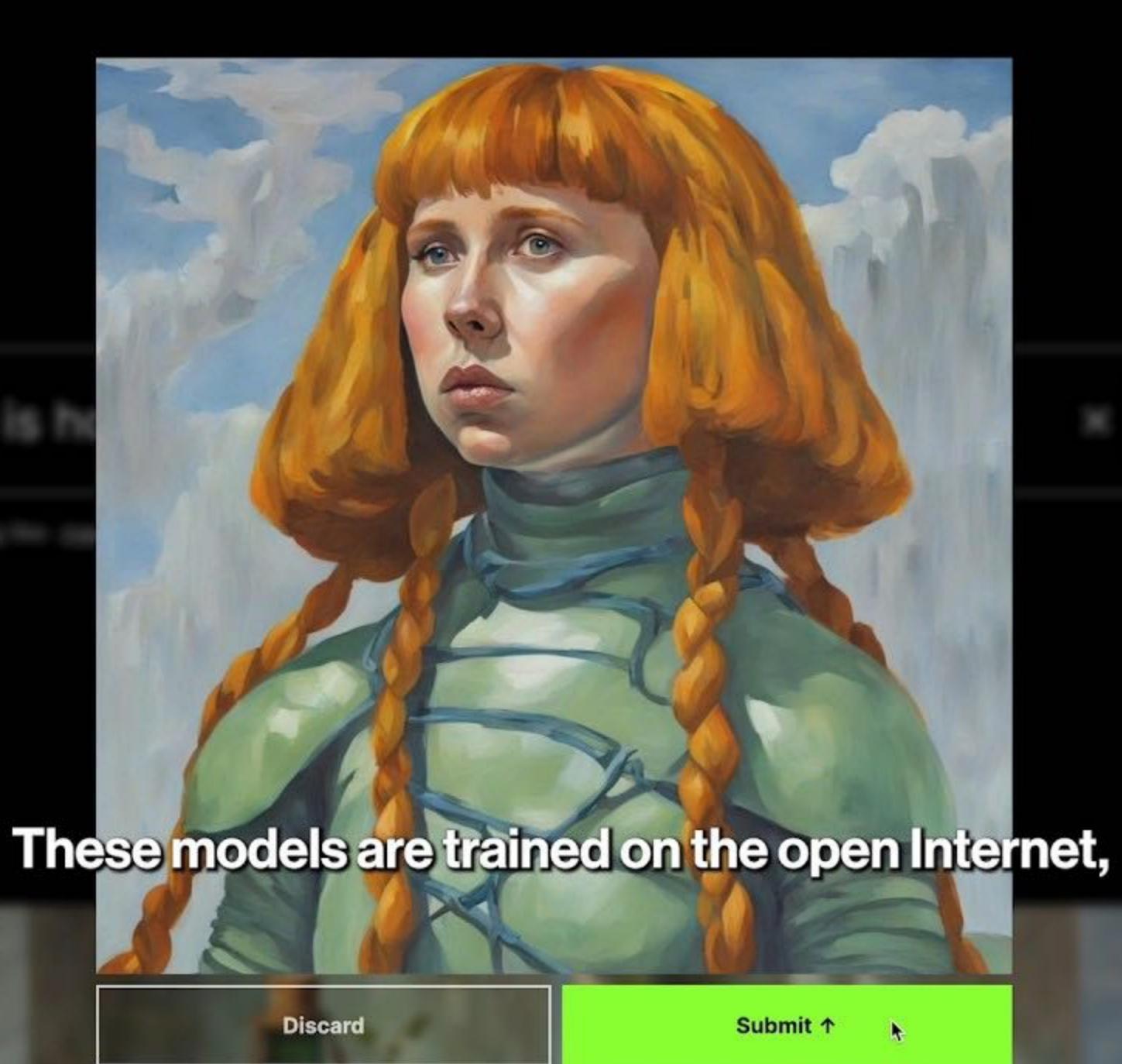
Jenny's Charcoal Matte

xhairymutantx, Holly Herndon and Mat Dryhurst

Fine-Tuning

We used images of Holly wearing this costume to fine-tune an image model, and that model was recursively refined to produce a consistent character that is able to be spawned by anyone using the interface provided. This model can produce infinite images of this new character. The images produced by this model will mostly all, in some way, be infected by the hairy mutant.

https://xhairymutantx.whitney.org/



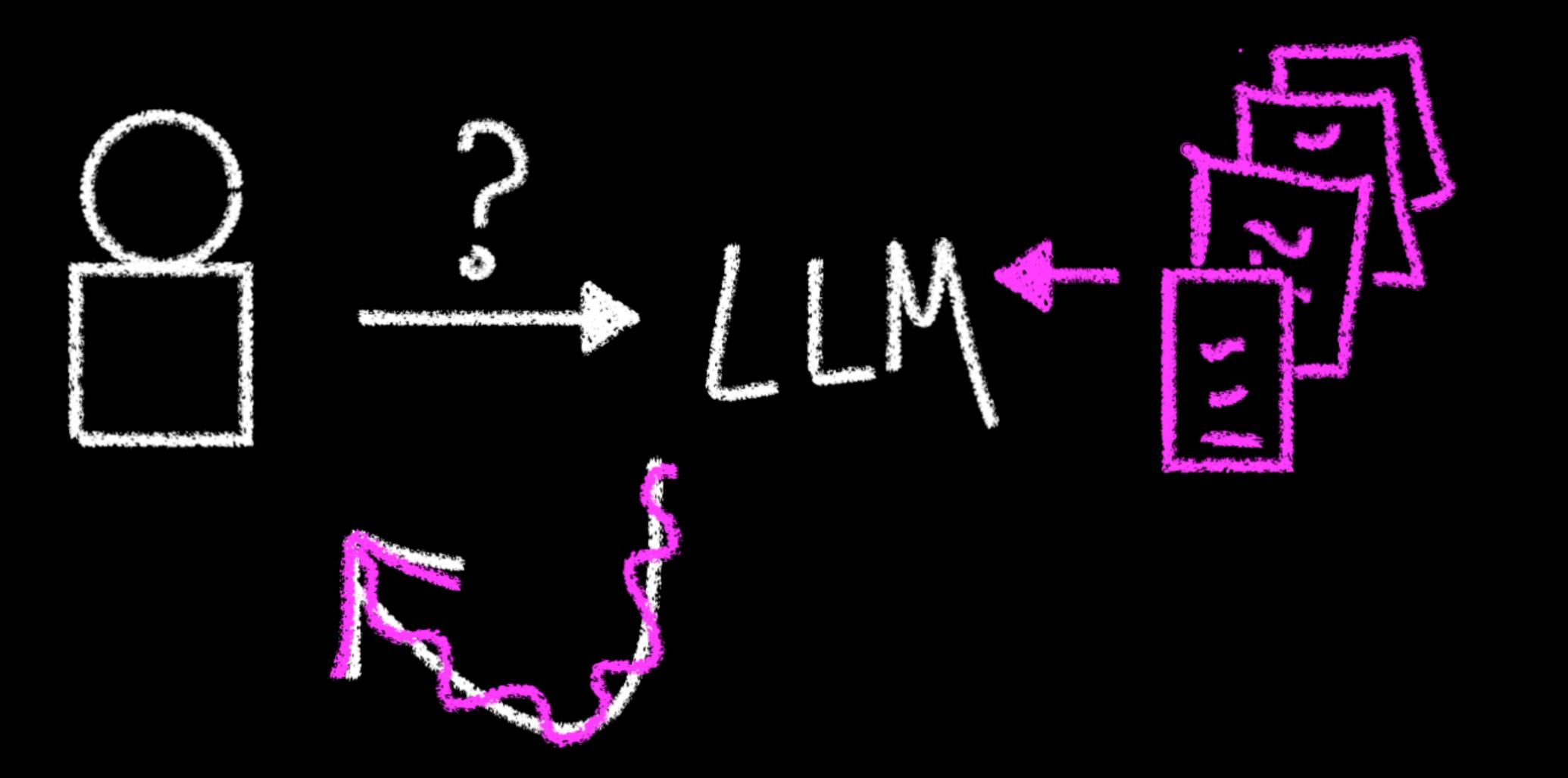
RAG

and the second section of the second



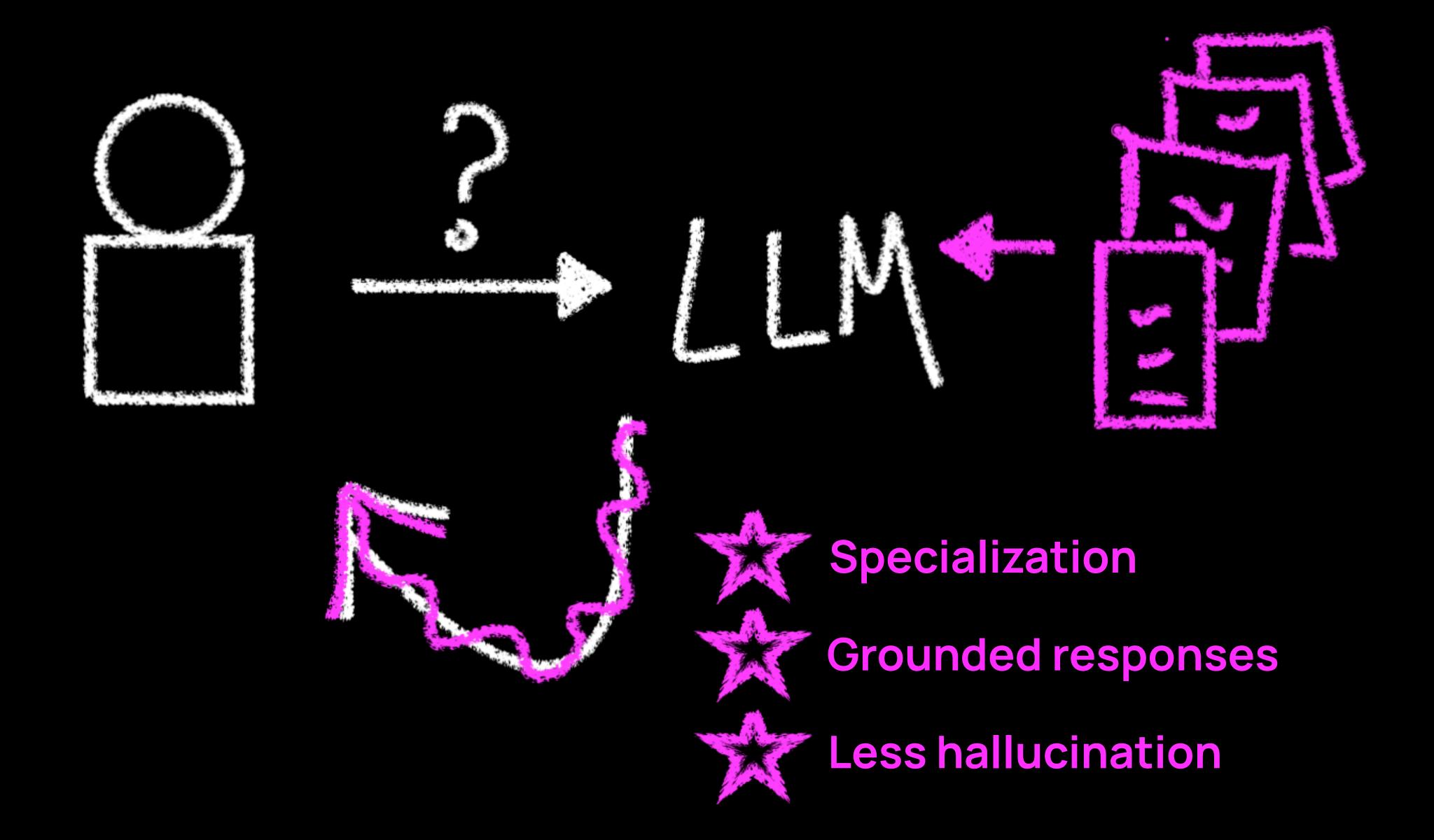
Retrieval-Augmented Generation (RAG)

Knowledge Base



Retrieval-Augmented Generation (RAG)

Knowledge Base



your own continuously updatable, locally running mini-LLM, shaped by the collection of documents you curate

Artistic Chatbot at Warsaw Academy of Fine ArtsRAG

Artistic Chatbot: a voice-to-voice RAG powered chat system

"The question answering (QA) chatbot responded to free-form spoken questions in Polish using the context retrieved from a curated, domain-specific knowledge base consisting of 226 documents provided by the organizers, including faculty information, art magazines, books, and journals."

by Filip J. Kucia, Bartosz Grabek, Szymon D. Trochimiak, and Anna Wróblewska At Warsaw Academy of Fine Arts https://arxiv.org/pdf/2509.00572

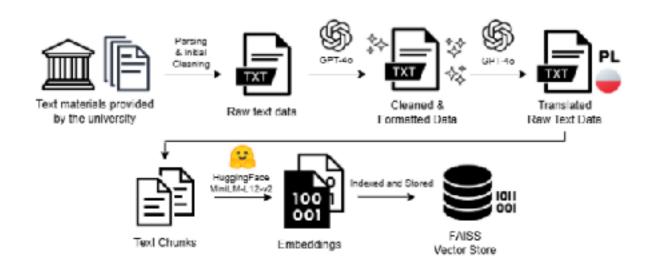


Figure 1: Data Preprocessing Pipeline

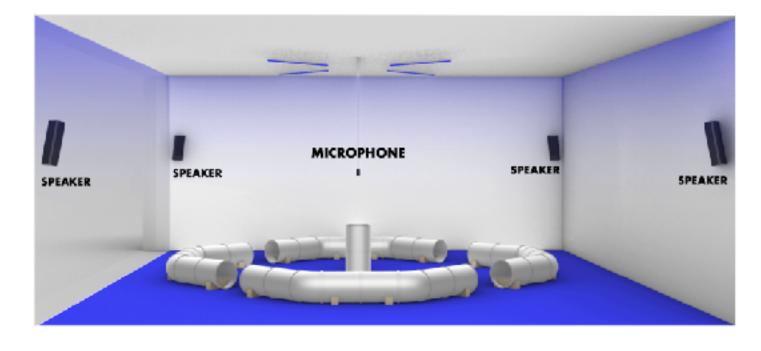


Figure 3: Chatbot Physical Setup

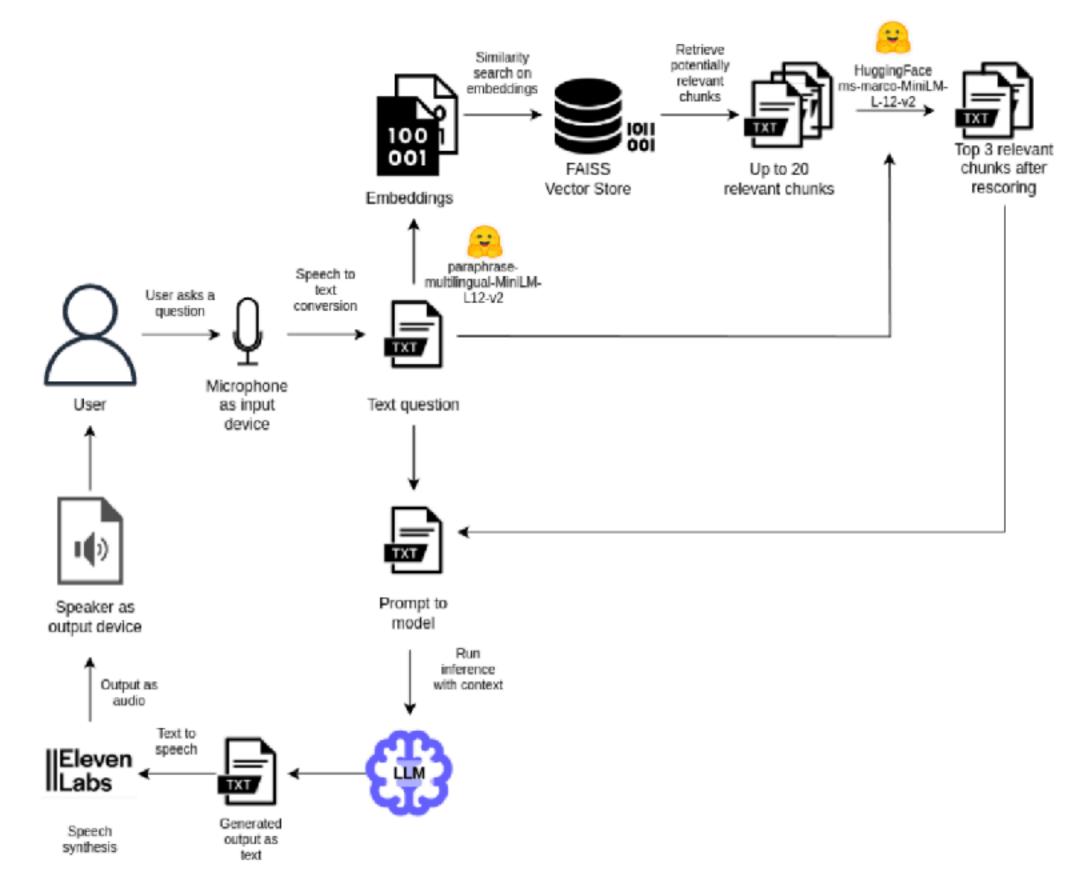


Figure 2: Inference Pipeline

by Filip J. Kucia, Bartosz Grabek, Szymon D. Trochimiak, and Anna Wróblewska At Warsaw Academy of Fine Arts https://arxiv.org/pdf/2509.00572

Artistic Chatbot adopts the persona of an artificial art curator, a role that involves responding to questions while simultaneously assessing their relevance to the exhibition.

Chatbots such as Artistic Chatbot effectively maintain responses grounded in exhibition content (60% of responses directly relevant), even when faced with unpredictable queries outside the target domain.

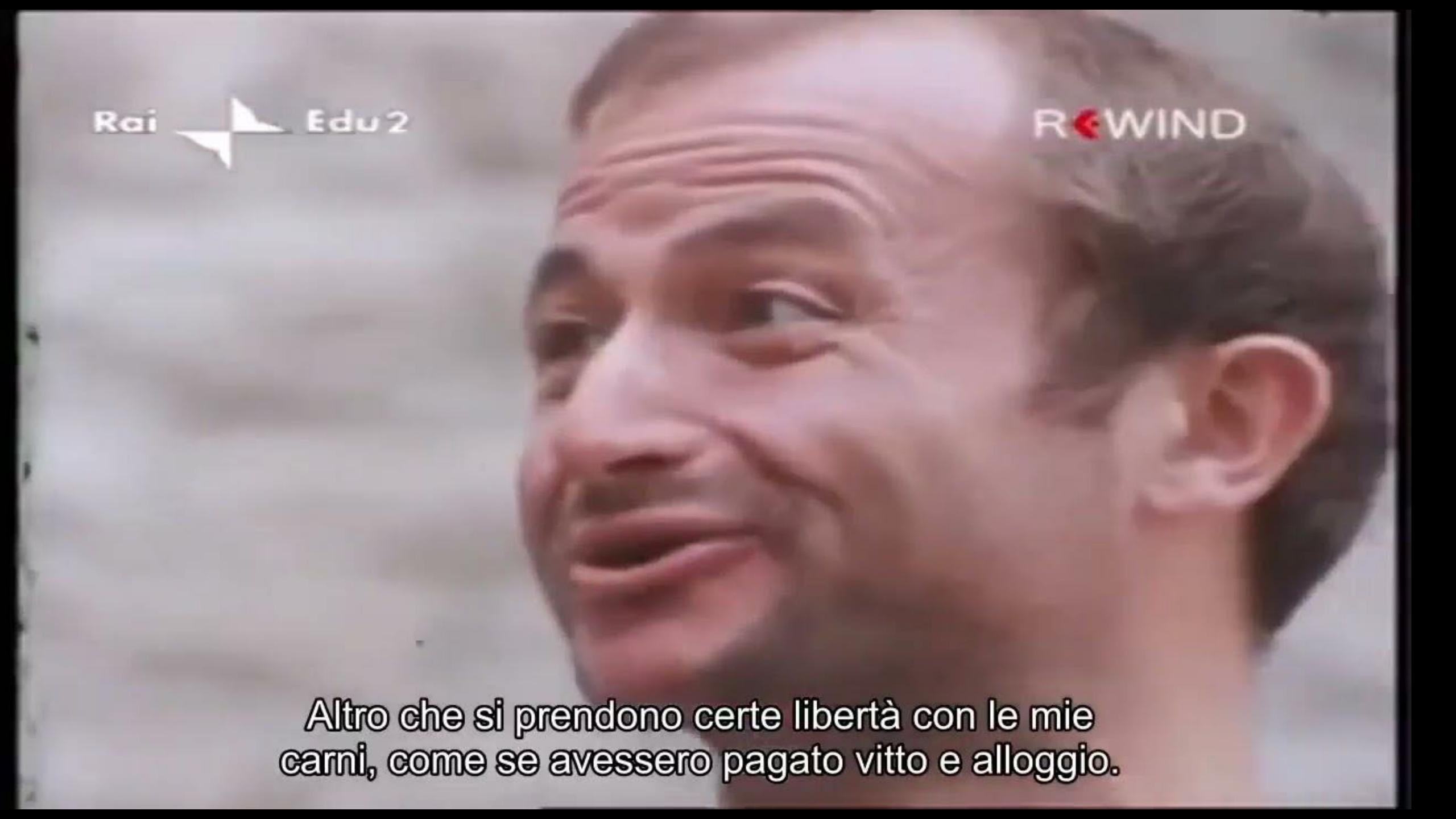
Al Blob!

RAG

Al Blob!: an experimental system that uses the capabilities of Large Language Models (LLMs) and Retrieval-Augmented Generation (RAG) in television archives

processes a curated dataset of 1,547 Italian television videos

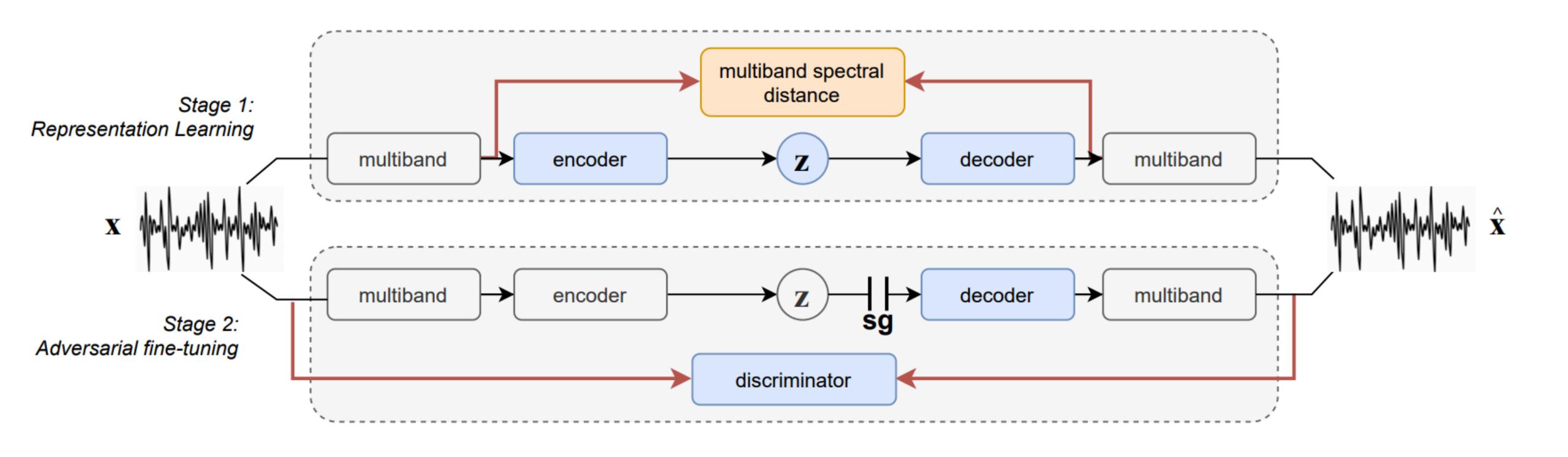
by Roberto Balestri at Università di Bologna



"By foregrounding dynamic, content-aware retrieval over static metadata schemas, Al Blob! demonstrates how semantic technologies can facilitate new approaches to archival engagement, enabling novel forms of automated narrative construction and cultural analysis."

by Roberto Balestri at Università di Bologna

RAVE



RAVE (Realtime Audio Variational autoEncoder) is an auto-encoder for sound: it takes sound as input and is trained to reconstruct that sound as output.

RAVE_anonymous

View the Project on GitHub anonymous84654/RAVE_anonymous

This project is maintained by anonymous84654

Hosted on GitHub Pages — Theme by orderedlist

RAVE: A variational autoencoder for fast and high-quality neural audio synthesis

Abstract: Deep generative models applied to audio have improved by a large margin the state-of-the-art in many speech and music related tasks. However, as raw waveform modelling remains an inherently difficult task, audio generative models are either computationally intensive, rely on low sampling rates, are complicated to control or restrict the nature of possible signals. Among those models, Variational AutoEncoders (VAE) give control over the generation by exposing latent variables, although they usually suffer from low synthesis quality. In this paper, we introduce a Realtime Audio Variational autoEncoder (RAVE) allowing both fast and high-quality audio waveform synthesis. We introduce a novel two-stage training procedure, namely representation learning and adversarial fine-tuning. We show that using a post-training analysis of the latent space allows a direct control between the reconstruction fidelity and the representation compactness. By leveraging a multi-band decomposition of the raw waveform, we show that our model is the first able to generate 48kHz audio signals, while simultaneously running 20 times faster than real-time on a standard laptop CPU. We evaluate synthesis quality using both quantitative and qualitative subjective experiments and show the superiority of our approach compared to existing models. Finally, we present applications of our model for timbre transfer and signal compression. All of our source code and audio examples are publicly available.

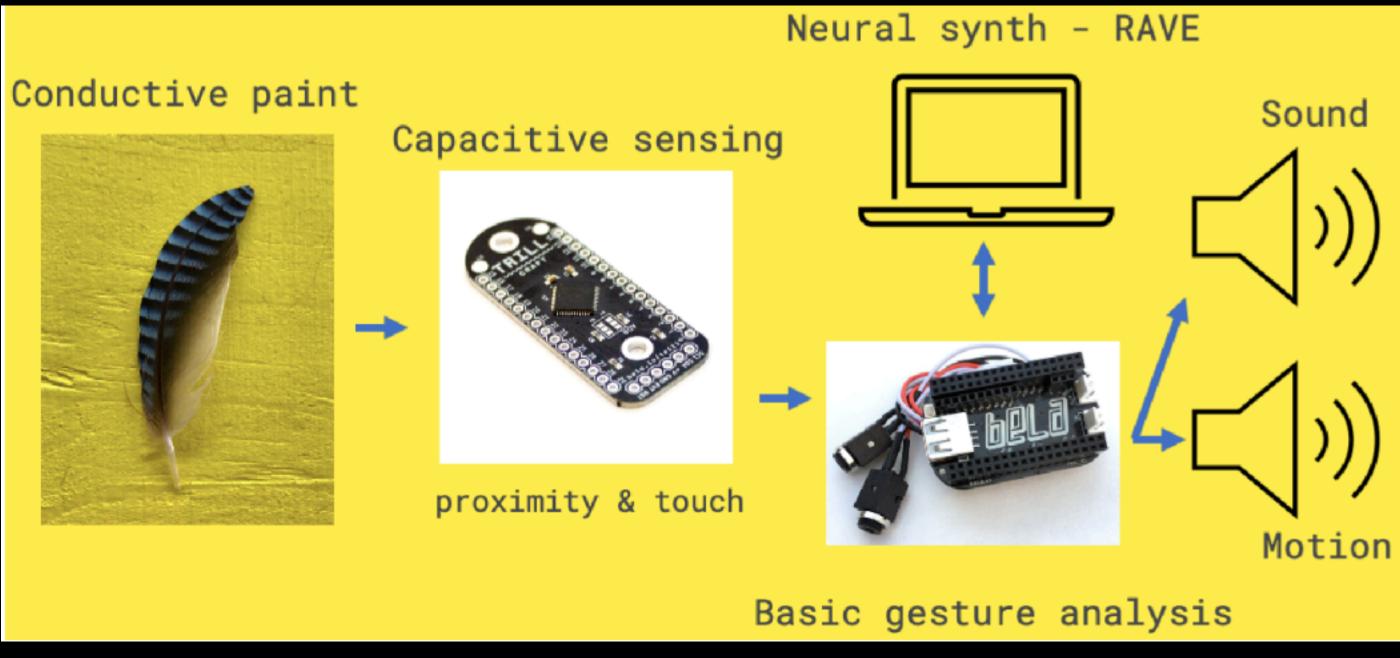
Timbre transfer

Given the high compression applied to the input waveform when encoded into a latent representation, we demonstrate that RAVE can be used to perform timbre transfer.

Strings to speech transfer

Pluma

RAVE



Concept, design & sound: Giacomo Lepri

CNC fabrication: Halldór Úlfarsson

Audio neural synthesis: Victor Shepardson

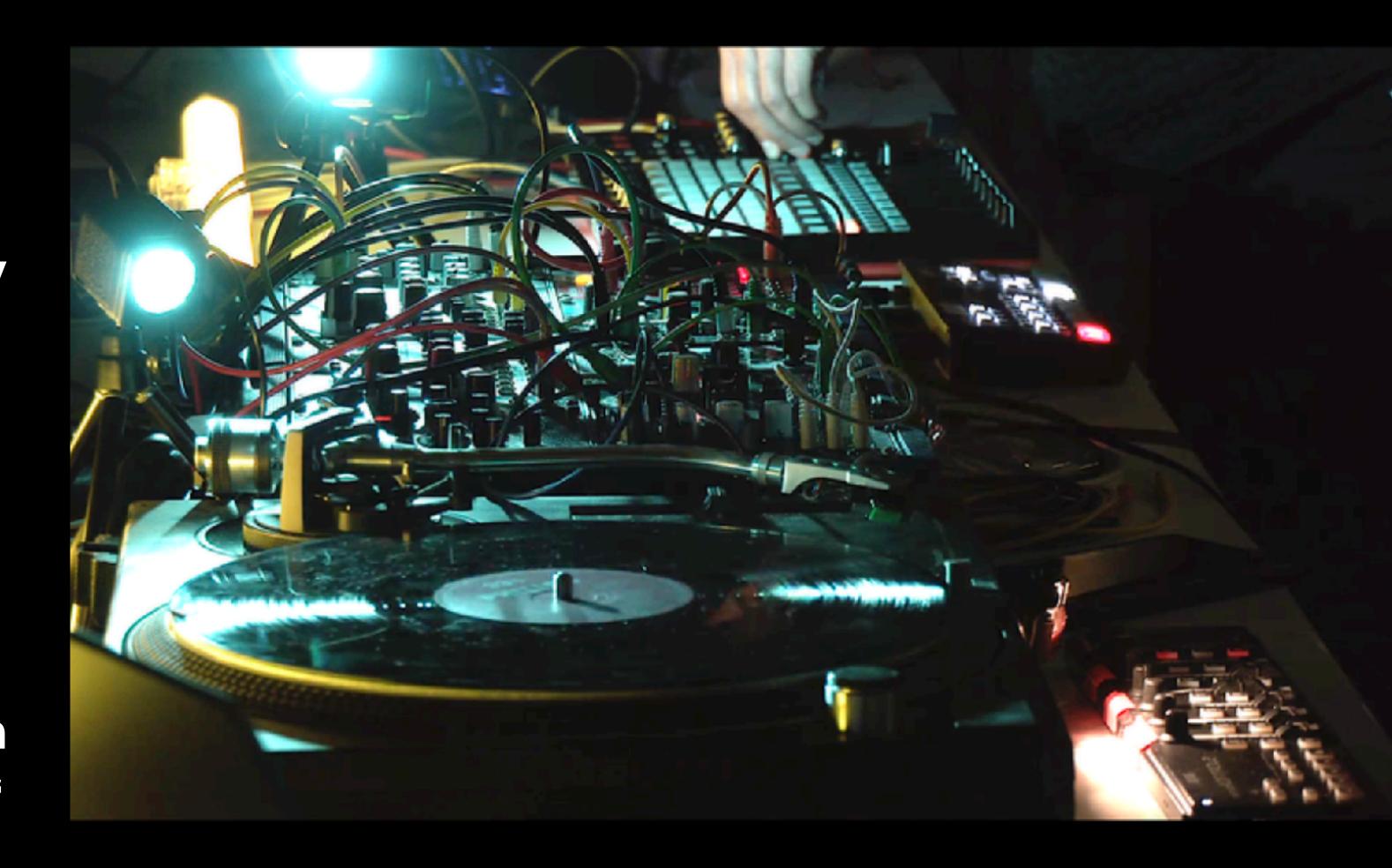
https://www.giacomolepri.com/pluma

Developed at the Intelligent Instruments Lab as part of the EU ERC INTENT project.

New Ruins

RAVE

"Their utilization of RAVE real-time timbre morphing models and the Somax2 machine listening and improvisation system developed by IRCAM adds organic and pleasantly unpredictable elements to what is otherwise a conventional setup using modular synthesizers and a turntable. The artist's physical interaction with these devices paradoxically highlights the hidden presence of machine intelligence. "





Models

Classifier

Generative adversarial network

FastGAN

Pix2Pix (conditonal GAN)

Fine Tuning

RAG

RAVE

1950s-1980s (Perceptron, Decision Trees)

AlexNet wins ImageNet (2012), showing deep neural nets outperform classical classifiers.

2014 (Goodfellow et al.)
DCGAN (2015) → Pix2Pix
(2016) → StyleGAN (2018)
→ fuels art/A.l. boom.

Models & Histories

Classifier

Generative adversarial network

FastGAN

Pix2Pix (conditonal GAN)

2006 (early neural nets)

→ 2018+ (Transfer Learning)

Fine Tuning

RAG

2020

RAVE

2024

Fine-tuning BERT (2018) & GPT-2 (2019) becomes standard for adapting large models to specific tasks. Artists start fine-tuning StyleGAN and GPT models.

Models

Classifier

Generative adversarial network

FastGAN

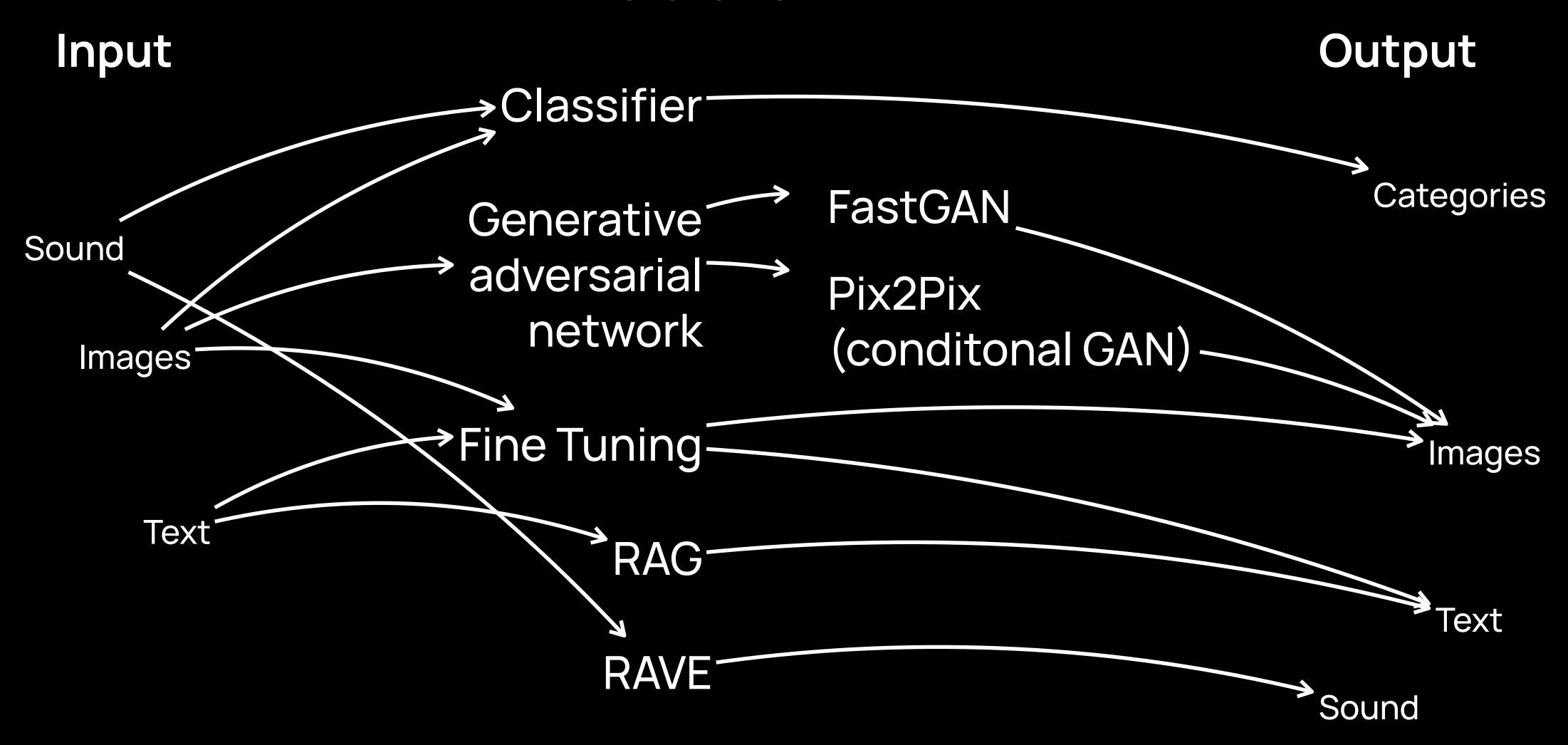
Pix2Pix (conditonal GAN)

Fine Tuning

RAG

RAVE

Models



Goals

Pick one model, collect a dataset, train from scratch or near-scratch, reflect on results.

Understand Al as a material and cultural process, not a black box.

Goals

Experiments over outcomes

Strangeness over perfection

Fun over Exhaustion

Workshop

Workshop

Monday 13 – 18h

Part 1

- 4 Groups (Classification, Pix2Pix, FastGAN, FineTuning, ...)
- 30 minutes to research and develop ideas together
- Presenting ideas
- Mixing into new Groups

Part 2

After 4 workshop rounds together we decide on the best project ideas for the week.

Part 3

- Pick Project for the week
- Start Working